
Table of Contents
Table of Contents 1-8

GcExcel .NET Overview 9

Key Features 10-11

Getting Started 12-15

Quick Start 15-18

License Information 18-21

Upgrade to Latest Version 21-22

Technical Support 22

Redistribution 22

End User License Agreement 22

Features 23-24

Worksheet 24

Work with Worksheets 24-29

Range Operations 29-30

Access a Range 30-31

Access Areas in a Range 31

Get Special Cell Ranges 31-36

Access Cells, Rows and Columns in a Range 36-37

Get Address of Cell Range 37-38

Cut or Copy Cell Ranges 38-41

Cut or Copy Shape, Slicer, Chart and Picture 41-42

Find and Replace Data 42-44

Get Row and Column Count 44-45

Hide Rows and Columns 45

Insert And Delete Cell Ranges 45-47

Insert and Delete Rows and Columns 47-48

Merge Cells 48

Set Values to a Range 48-49

Set Row Height and Column Width 49

Auto Fit Row Height and Column Width 49-51

Work with Used Range 51-52

Measure Digital Width 52-53

Documents for Excel, .NET Edition 1

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Freeze Panes in a Worksheet 53-54

Freeze Trailing Panes in a Worksheet 54-55

Customize Worksheets 55-57

Worksheet Views 57-59

Cell Types 59-62

Range Template Cell 62-66

Quote Prefix 66-67

Tags 67-70

Rich Text 70-74

Workbook 74

Create Workbook 74-75

Open and Save Workbook 75-76

Protect Workbook 76-78

Cut or Copy Across Sheets 78-79

Enable or Disable Calculation Engine 79-80

Workbook Views 80

Comments 80-83

Hyperlinks 83-85

Sort 85-88

Filter 89-91

Group 91

Create Row or Column Group 91-92

Remove a Group 92-93

Summary Row 93-94

Outline Subtotals 94-96

Outline Column 96-100

Conditional Formatting 100-101

Cell Value Rule 101

Date Occurring Rule 101-102

Average Rule 102

Color Scale Rule 102-103

Data Bar Rule 103

Top Bottom Rule 103-104

Documents for Excel, .NET Edition 2

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Unique Rule 104-105

Icon Sets Rule 105

Expression Rule 105-106

Data Validations 106

Add Validations 106-109

Delete Validation 109

Modify Validation 109-110

Data Binding 110-114

Digital Signatures 114-124

Formulas 124-125

Formula Parser 125-131

Formula Functions 131-149

Set Formula to Range 149-151

Set Table Formula 151-153

Set Array Formula 153-154

Precedents and Dependents 154-157

Iterative Calculation 157-158

Cross Workbook Formula 158-159

Custom Functions 159-168

Shapes and Pictures 168-171

Customize Shape Format and Shape Text 171-176

Hyperlink on Shape 176-178

Group or Ungroup Shapes 178-180

Shape Adjustment 180-181

Background Image 181-182

Size and Position of Image 182-183

Image Transparency 183

Control Position of Overlapping Shapes 183-184

Styles 184-185

Set Sheet Styling 185-189

Create and Set Custom Named Style 189-191

Barcodes 191

QRCode 191-194

Documents for Excel, .NET Edition 3

Copyright © 2021 GrapeCity, Inc. All rights reserved.

EAN-13 194-196

EAN-8 196-198

Codabar 198-201

Code39 201-203

Code93 203-205

Code128 206-208

GS1-128 208-210

Code49 210-212

PDF417 212-214

Data Matrix 214-217

Theme 217-218

Chart 218-219

Create and Delete Chart 219-220

Configure Chart 220

Chart Title 220-221

Chart Area 221-222

Plot Area 222-223

Customize Chart Objects 223-224

Series 224-228

Configure Chart Series 228-238

Error Bars 238-243

Walls 243

Axis and Other Lines 243-245

Configure Chart Axis 245-248

Floor 248-249

Data Label 249-251

Legends 251-252

Chart Types 252-254

Area Chart 254-256

Bar Chart 256-258

Column Chart 258-260

Combo Chart 260-262

Line Chart 262-264

Documents for Excel, .NET Edition 4

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Pie Chart 264-266

Stock Chart 266-269

Surface Chart 269-270

XY (Scatter) Chart 270-273

Radar Chart 273-274

Statistical Chart 274-275

Box Whisker 275-276

Histogram 276-277

Waterfall Chart 277-279

Pareto Chart 279-280

Specialized Chart 280

Sunburst 280-281

TreeMap 281-283

Funnel 283-284

Chart Sheet 284-286

Table 286-287

Create and Delete Tables 287

Modify Tables 287-289

Table Sort 289

Table Filters 289-290

Add and Delete Table Columns and Rows 290-292

Table Style 292

Modify Table with Custom Style 292-293

Modify Table Layout 293-294

Pivot Table 294-295

Create Pivot Table 295-296

Pivot Table Settings 296-302

Pivot Table Style 302-307

Pivot Chart 307-310

Sparkline 310-315

Slicer 315

Add Slicer in Table 315-316

Add Slicer in Pivot Table 316-318

Documents for Excel, .NET Edition 5

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Use Do Filter Operation 318-319

Slicer Style 319-320

Modify Slicer with Custom Style 320

Modify Table Layout for Slicer Style 320-321

Print Settings 321

Configure Page Header and Footer 321-322

Configure Page Settings 322-324

Configure Page Breaks 324-325

Configure Paper Settings 325-326

Configure Print Area 326-327

Configure Columns to Repeat at Left and Right 327-328

Configure Rows to Repeat at Top and Bottom 328

Configure Sheet Print Settings 328-329

Configure Paper Source 329-330

Logging 330-336

Templates 337-340

Template Configuration 340-342

Template Fields 342-345

Template Properties 345-352

Cell Expansion 352

Cell Context 352-356

Conditional Formatting 356-358

Global Settings 358-361

Fixed Layout 362-365

Default Values in Template Cells 365-366

PDF Form Builder 366-379

Custom Form Input Types 379-384

Charts 384-389

Tables 389-391

Sparklines 391-393

Data Source Binding 393-397

Create Excel Report using Template 397-402

File Operations 403

Documents for Excel, .NET Edition 6

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Import and Export .xlsx Document 403-405

Export to PDF 405-407

Configure Fonts and Set Style 407-408

Export Pivot Table Styles And Format 408-410

Export Shapes 410-411

Export Vertical Text 411-412

Shrink To Fit With Text Wrap 412-413

Control Pagination 413-414

Render Excel Range Inside PDF 414-417

Export Multiple Sheets To One Page 417-418

Keep Rows Together Over Page Breaks 418-419

Delete Blank Pages From Middle 419-420

Export Different Headers On Different Pages 420-421

Export Last Page Without Headers 421-422

Export Custom Page Information 422-423

Export Specific Pages To PDF 423-424

Save Multiple Workbooks to Single PDF 424-426

Export Worksheet to PDF 426-428

Working With Page Setup 428-429

Support Security Options 429-431

Support Document Properties 431-432

Adjust Column Width and Row Height 432

Export Charts 432-437

Export Slicers 437-438

Export Barcodes 438-439

Export Signature Lines 439-440

Support Sheet Background Image 440-441

Support Background Color Transparency 442

Control Image Quality 442-443

Track Export Progress 443-445

Export to HTML 445-449

Import and Export CSV File 449-451

Import and Export CSV File with Delimiters 451-453

Documents for Excel, .NET Edition 7

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Import and Export JSON Stream 453-456

Import and Export from JSON string 456

Import and Export SpreadJS Files 456-468

Support for SpreadJS Features 468-469

Import and Export Macros 469-470

Import and Export OLE Objects 470-471

Convert to Image 471-475

API Reference 476

Release Notes 477

Release Notes for Version 4.1.0 477-478

Release Notes for Version 4.0.0 478-479

Release Notes for Version 3.2.0 479

Release Notes for Version 3.1.0 479-480

Release Notes for Version 3.0.0 480-481

Release Notes for Version 2.2.0 481-482

Release Notes for Version 2.1.0 482

Release Notes for Version 2.0.0 482-483

Release Notes for Version 1.5.0.4 483

Release Notes for Version 1.5.0.3 483-484

Release Notes for Version 1.5.0.1 484

Release Notes for Version 1.4.0 484-485

Index 486-492

Documents for Excel, .NET Edition 8

Copyright © 2021 GrapeCity, Inc. All rights reserved.

GcExcel .NET Overview
GrapeCity Documents for Excel, .NET Edition is a new small-footprint, high-performance spreadsheet component that
can be used in your server or desktop applications. It gives developers a comprehensive API to quickly create, manipulate,
convert, and share Microsoft Excel-compatible spreadsheets. Further, you can call it from nearly any application and
platform.

GcExcel .NET targets multiple platforms including .NET Framework, .NET Core and Mono; thus making it the perfect
solution for all your spreadsheet challenges.

The best part about using GcExcel .NET is that it models its interface-based API on Excel's document object model. This
means that users can import, calculate, query, generate, and export any spreadsheet scenario as and when required.
Moreover, the imported or generated spreadsheets can contain references to one another, such as you can reference full
reports, sort and filter tables, sort and filter pivot tables, add charts, sparklines, conditional formats, and dashboard reports
etc.

What GcExcel .NET offers you

Facilitates server-side spreadsheet generation, manipulation, and serialization.
Requires low memory footprint.
Robust calculation engine.
Produces output in varied formats including .xlsx and ssjson.
Provides multi-platform support including .NET Framework, .NET Core and Mono.
Compatible to run in environments including Winforms, WPF, ASP.NET etc.

For an introduction to GcExcel .NET features, the following documentation is available:

Features

For product details, the following reference documentation is available:

API Reference

Documents for Excel, .NET Edition 9

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Key Features
With a set of class libraries, collections, interfaces, pre-defined functions, properties and methods that comes packaged
with GcExcel .NET; developers can quickly build everything right from the scratch to organize and structure business-
critical data for maximum productivity and enhanced analysis.

GcExcel.NET provides users with the following essential features in order to facilitate developers in creating powerful
spreadsheets using .Net Core:

Lightweight API Architecture for Improved Efficiency
GcExcel .NET enables users to save a considerable amount of time, storage memory and efforts by improving the
overall efficiency with its lightweight API architecture that can be used to generate, load, edit, save and convert
spreadsheets.

Flexible Themes and Components
For complete customization, GcExcel .NET allows you to set up custom themes, configure components, summarize
data, customize styles, embed drawing objects, apply cell formatting and integrate calculation engine.

Seamless Excel Compatibility
While executing the import operation, you can include pivot tables, comments, charts, conditional formatting, data
validation, filters, formulas, shapes, pictures, slicers, sparklines and tables etc. in the spreadsheets without any
compatibility issues.

Extensive Support for Major Operating Systems
GcExcel .NET core applications can be deployed on all major operating systems including Microsoft Windows, Linux
and macOS.

Based on Excel Object Model
The interface-based API model enables users to import data, calculate formulas, query, generate, and export
complex spreadsheet scenarios as per specific preferences.

No Dependency on MS Excel
In order to work with GcExcel .NET, users don't need to install MS Office Suite and access MS Excel on their
systems.

Use Built-in Templates for Simple Forms
Using built-in templates, you can quickly create simple forms like invoice etc. while working with spreadsheets.

Create Interactive Experience with SpreadJS Sheets
GcExcel .NET can be used with spreadsheets for a completely interactive and user-friendly spreadsheet experience.

Workbook and Worksheets
You can create workbook and add worksheets while also performing the import and export operations. Further,
you can activate worksheets, configure its display, delete it and protect it from modification or encrypt it with a
password.

Formulas and Functions
With support for implementing formulas,creating custom functions and using 450+built-in functions, you can
execute complex spreadsheet calculations without any hassle.

Documents for Excel, .NET Edition 10

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Pivot and Excel Tables
You can create tables and pivot tables to automatically calculate the count, total or average of data in the
spreadsheets. You can also rename pivot table fields, manage grand total visibility settings and change row Axis
layout of pivot field.

Export to PDF
Using the export to PDF feature, users can save spreadsheets to PDF files with different page settings,
features, document properties and security options. You can also export Excel sheets with charts, slicers and sheet
background images.

Deploy Apps with Excel Spreadsheets to the Cloud
With GcExcel .NET, you can apply cloud based deployments and deploy your applications on Azure and AWS
Lambda.

Shapes and Pictures
With GcExcel API, you can insert and customize shapes and pictures on cells of a worksheet, apply formatting,
gradient fill, configure text, insert hyperlinks, set adjustment points of the shapes, group/ungroup them in a
worksheet and determine the position and size of an image.

Use Templates to create custom Excel reports
GcExcel provides templates with comprehensive API to create custom Excel reports with advanced layouts. You can
use multiple data soures to bind the data. The templates provide flexible syntax, easy notations and extended
reusability making it an ideal solution to generate Excel reports.

For more information on the complete list of supported features in GcExcel .NET, refer to the Features topic in the
documentation.

Documents for Excel, .NET Edition 11

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Getting Started

System Requirements
GcExcel .NET requires the following system requirements depending upon the framework you are using to create an application.

.NET Core

Operating System Support
Ubuntu 14.04 & 16.04
Mac OS X 10.11+
Windows 7+ / Server 2012 R2+
Windows Nano Server TP5
Windows Server 2016

.NET Core 2.0+ NuGet Package

.NET Framework 4.6.1

Operating System Support
Windows 7+ / Server 2012 R2+
Windows Server 2016

Mono

Operating System Support
Linux
Mac OS X
Sun Solaris
Windows 7+

Setting up an application
GcExcel .NET reference is available through NuGet, a Visual Studio extension that automatically adds libraries and references to
your project. To work with GcExcel .NET, you need to have following references in your application:

Reference Purpose

GrapeCity.Documents.Excel To use GcExcel in an application, you need to reference (install) just the
GrapeCity.Documents.Excel package. It pulls in the required infrastructure packages.

GrapeCity.Documents.Common GrapeCity.Documents.Common is an infrastructure package used by other packages. You do
not need to reference it directly.

Add reference to GcExcel .NET in your appplication

In order to use GcExcel .NET in a .NET Core, ASP.NET Core, .NET Framework application (any target that supports .NET Standard
2.0), install the NuGet packages in your application using the following steps:

Documents for Excel, .NET Edition 12

Copyright © 2021 GrapeCity, Inc. All rights reserved.

https://www.nuget.org/packages/GrapeCity.Documents.Excel/
https://www.nuget.org/packages/GrapeCity.Documents.Excel/
https://www.nuget.org/packages/GrapeCity.Documents.Layout/
https://www.nuget.org/packages/GrapeCity.Documents.Common/

To find and install the GrapeCity.Documents.Excel NuGet package

1. In Solution Explorer, right-click either Dependencies or a project and select Manage NuGet Packages.
2. In the Browse tab, select nuget.org from the Package source dropdown.
3. In the Browse tab, type "grapecity.documents" or "GrapeCity.Documents" in the search text box at the top and find

the package "GrapeCity.Documents.Excel" as shown in the below image.

4. Click Install to install the GrapeCity.Documents.Excel package and its dependencies into the project. When the
installation is complete, make sure you check the NuGet folder in your solution explorer and confirm whether or not
the GrapeCity.Documents.Excel package is added to your project dependencies.

To manually create NuGet package source

In order to manually create Nuget feed source, you need to complete the following steps to add the Nuget feed URL to your
Nuget settings in Visual Studio. Before you proceed with this step, make sure you first download the GcExcel .NET Nupkg
file and put it in a local folder, for example - "D:\Nupkg".

1. From the Tools menu, select Nuget Package Manager | Package Manager Settings. The Options dialog box appears.
2. In the left pane, select Package Sources.

3. Click the button in the top right corner. A new source is added under Available Package Sources.
4. Set a Name for the new package source.
5. To add source in the Source field, click the ellipsis button next to the Source field to browse for the Nupkg folder.
6. After you select the Nupkg folder, click the Update button and finally click OK.

To install the GrapeCity.Documents.Excel package using command line interface

VISUAL STUDIO FOR WINDOWS

Documents for Excel, .NET Edition 13

Copyright © 2021 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/documents-api-excel/download
https://www.grapecity.com/documents-api-excel/download

1. Open the CommandPrompt window on your Windows system.
2. Create a console application 'myApp' by using the command: dotnet new console -o myApp
3. Use the cd command to navigate to your project folder: cd myApp
4. Install GcExcel .NET NuGet package using the following command:

dotnet add package GrapeCity.Documents.Excel

To add GrapeCity.Documents.Excel package reference

GcExcel .NET is a cross-platform spreadsheet component that can be used on multiple platforms including Windows, Linux
and Mac operating system.

In case you are creating an application using the Visual Studio, user can edit the **.csproj file and a package reference as
shown in the image below:

After this step, follow the steps in the Quick Start section.

1. Open Visual Studio for MAC.
2. Create any application (any target that supports .NET Standard 2.0).
3. In tree view on the left, right-click Dependencies and choose Add Packages.
4. In the Search panel, type "GrapeCity.Documents".
5. From the list of packages displayed in the left panel, select GrapeCity.Documents.Excel and click Add Packages.
6. Click Accept.

This automatically adds references of the package and its dependencies to your application. After this step, follow the steps
in the Quick Start section.

VISUAL STUDIO FOR MAC

Documents for Excel, .NET Edition 14

Copyright © 2021 GrapeCity, Inc. All rights reserved.

1. Open Visual Studio Code.
2. Install Nuget Package Manager from Extensions.
3. Create a folder "MyApp" in your Home folder.
4. In the Terminal in Visual Studio Code, type "cd MyApp"
5. Type command "dotnet new console"

Observe: This creates a .NETCore application with MyApp.csproj file and Program.cs.
6. Press Ctrl+P. A command line opens at the top.
7. Type command: ">"

Observe: "Nuget Package Manager: Add Package" option appears.
8. Click the above option.
9. Type "Grapecity" and press Enter.

Observe: GrapeCity packages get displayed in the dropdown.
10. Choose GrapeCity.Documents.Excel.
11. Type following command in the Terminal window: "dotnet restore"

This adds references of the package to your application. After this step, follow the steps in the Quick Start section.

VISUAL STUDIO FOR LINUX

Quick Start
The following quick start section helps you in getting started with the GcExcel library:

Documents for Excel, .NET Edition 15

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Follow the below steps to create a simple .NET Core Console application:

Step 1: Create a new Console App (.NET Core)
Step 2: Create and save a new workbook
Step 3: Build and Run the Project

Step 1: Create a new Console App (.NET Core)

1. In Visual Studio, select File | New | Project to create a new ASP.NET Core Console Application.
2. From the 'New Project' dialog, select Installed | Visual C# | .NET Core | Console App (.NET Core), and click OK.
3. Add the GcExcel .NET references to the project. In the Solution Explorer, right click Dependencies and select

Manage NuGet Packages. In NuGet Package Manager, select nuget.org as the Package source. Search for
'grapecity.documents', select GrapeCity.Documents.Excel, and click Install.

Step 2: Create and save a new workbook

1. In Program.cs, include the following namespace
using Grapecity.Documents.Excel;

2. Create a new workbook using the Workbook class, add a new worksheet to it and save the workbook using the Save
method of workbook class.
Program.cs

Workbook workbook = new Workbook();
workbook.Worksheets[0].Range["A1"].Value = "Hello Word!";
workbook.Save("HelloWord.xlsx");

Step 3: Build and Run the Project

1. Click Build | Build Solution to build the project.
2. Press F5 to run the project.
3. Once the project is executed, a console window is displayed and HelloWord.xlsx file is created at the specified

location.

.NET CORE CONSOLE APPLICATION

Documents for Excel, .NET Edition 16

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Follow the below steps to create a simple .NET Core MVC Application:

Step 1: Create a new Web Application (.NET Core)
Step 2: Add a Controller
Step 3: Add a View
Step 4: Build and Run the Project

Step 1: Create a new Web Application (.NET Core)

1. In Visual Studio, select File | New | Project to create a new ASP.NET Core Web Application.
2. From the 'New Project' dialog, select Installed | Visual C# | .NET Core | ASP.NET Core Web Application, and click

OK.
3. In the 'New ASP.NET Core Web Application(.NET Core)' dialog, select Web Application (Model-View-Controller), and

click OK.
4. Add the GcExcel .NET references to the project. In the Solution Explorer, right click Dependencies and select

Manage NuGet Packages. In NuGet Package Manager, select nuget.org as the Package source. Search for
'grapecity.documents', select GrapeCity.Documents.Excel, and click Install.

Step 2: Add a Controller

1. In the Solution Explorer, right click the folder Controllers.
2. From the context menu, select Add | Controller. The Add Scaffold dialog appears.
3. Complete the following steps in the Add Scaffold dialog:

Select MVC Controller-Empty and click Add.
Set name of the MVC controller (For example: GcExcelController) and click Add.

4. Add the GcExcel reference in Controller file:
using GrapeCity.Documents.Excel;

5. In the Index() method of the Controller, add the following code:
GcExcelController.cs

public IActionResult Index()
 {
 Workbook workbook = new Workbook();
 workbook.Worksheets[0].Range["A1"].Value = "Hello Word!";
 workbook.Save("HelloWord.xlsx");

 return View();
 }

.NET CORE MVC APPLICATION

Documents for Excel, .NET Edition 17

Copyright © 2021 GrapeCity, Inc. All rights reserved.

A new Controller is added to the application within the folder Controllers.

Step 3: Add a View

1. From the Solution Explorer, right click the folder Views and select Add | New Folder.
2. Name the new folder. Provide the same name as the name of your controller, minus the suffix Controller (in our

example: GcExcel).
3. Right click the folder GcExcel, and select Add | View. The Add MVC View dialog appears.
4. Complete the following steps in the Add MVC View dialog:

Set View name same as the Action name, Index (for example: Index.cshtml).
Click Add.

5. Replace the code in Index.cshtml file with below:
Index.cshtml

@{
ViewData["Title"] = "Documents for Excel, .Net Edition";
}
<script>
 onload = function () {
 alert("File Saved: HelloWord.xlsx");
}
</script>

Step 4: Build and Run the Project

1. Click Build | Build Solution to build the project.
2. Press F5 to run the project.
3. Once the project is executed, access the URL: http://localhost:1234/GcExcel/Index to generate the Excel file. An

alert box is displayed and HelloWord.xlsx file is created at the specified location.

This topic
includes:
Types of Licenses
Apply License

License Information

Types of Licenses
GcExcel .NET supports the following types of license:

Unlicensed
Evaluation License
Licensed

Unlicensed

When you download GcExcel for the first time, the product works under No-License i.e Unlicensed mode with a few
limitations, that are highlighted below.

Maximum time of opening and saving Excel files

Every time a user runs an application, up-to 100 Excel files can be opened or saved using GcExcel .NET.

If a user has opened 100 files, and trying to open the 101th file, exceptions will be thrown saying that you
have exceeded the number of files you can open when the license is not found.

Documents for Excel, .NET Edition 18

Copyright © 2021 GrapeCity, Inc. All rights reserved.

http://localhost:1234/GcExcel/Index

If a user has saved 100 Excel files, and trying to save the 101th file, an Excel file with just a watermark sheet
will be saved. The content of watermark tells users that no license is found.

Note that this limitation is triggered every time when users run the program, so that they can continue to open or
save another 100 times after they restart their application.

Maximum Operating Time

While executing an application program, the duration of operating GcExcel .NET will last up-to 10 hours.

Once you complete the 10 hours of operation, you may notice the following:

An exception will be thrown while creating an instance of Workbook, saying that you have exceeded the
maximum operating time, and cannot create a new instance.
The following API's will stop working.
API Remark

IRange Throws an exception, same as create an instance of
Workbook.

IWorkbook.Worksheets.Add() Returns null.

Note that this limitation will be reset every time when users run the program, so that they can continue to use
these APIs after they restart their program.

Watermark Sheet

When saving an Excel file, a new worksheet with watermark will be added. This sheet will be the active sheet of
your workbook. The content of the watermark will tell users that no license is found and will provide our sales and
contact information so that you can directly connect to our support team.

When saving a PDF file, a PDF file with a watermark on the top of each exported page will be added. The content of
the watermark will tell users which license is applied and will provide our sales and contact information.

The following watermark will be displayed:

"Unlicensed copy of GrapeCity Documents for Excel, .NET Edition. Contact us.sales@grapecity.com to get your 30-day
evaluation key to remove this text and other limitations."

Evaluation License

GcExcel .NET trial license is available for one month for users to evaluate the product and see how it can help with their
comprehensive project requirements.

In order to evaluate the product, you can contact us.sales@grapecity.com and ask for the evaluation license key. The
evaluation key is sent to users via email and holds valid for 30 days. After applying the evaluation license successfully, the
product can be used without any limitations until the license date expires.

After the expired date, the following limitations will be triggered:

Cannot create new instance

When your evaluation license expires, an exception specifying that the evaluation license is expired will be thrown
on creating a new instance of the workbook.

Open and Save Excel Files
If a user opens an Excel file, an exception will be thrown saying that the evaluation license is expired.
If a user saves a file, an Excel file with only the watermark sheet will be saved.

Documents for Excel, .NET Edition 19

Copyright © 2021 GrapeCity, Inc. All rights reserved.

mailto:us.sales@grapecity.com
mailto:us.sales@grapecity.com

Save PDF Files
If a user saves a PDF file, a PDF file with watermark on the top of each exported page will be saved.

API Limitations

The following API's will stop working after your evaluation license has expired:
API Remark

IRange Throws an exception, same as create an instance of Workbook.

IWorkbook.Worksheets.Add() Returns null.

Watermark

When saving an Excel file, an Excel file with a watermark sheet will be saved. The content of watermark will tell
users that no license is found and will provide our sales and contact information. When saving a PDF file, a PDF file
with a watermark on the top of each exported page will be saved. The content of watermark will tell users which
license is applied and will provide our sales and contact information.

In case you're using an evaluation license, the following watermark will appear:

"Expired Evaluation copy of GrapeCity Documents for Excel, .NET Edition. Contact us.sales@grapecity.com to purchase
license."

Licensed

GcExcel .NET production license is issued at the time of purchase of the product. If you have production license, you can
access all the features of GcExcel .NET without any limitations.

Watermark Sheet

No watermark will be displayed when you have a production license.

Apply License
To apply evaluation/production license in GcExcel .NET, the long string key needs to be copied to the code in one of the
following two ways.

To license all the workbooks in a project

C#

Workbook.SetLicenseKey(" Your License Key");

To license an instance of the workbook

C#

var workbook = new Workbook("Your License Key");

.NET CORE CONSOLE APPLICATION

Documents for Excel, .NET Edition 20

Copyright © 2021 GrapeCity, Inc. All rights reserved.

mailto:us.sales@grapecity.com

To license all the workbooks in a project, add the license key in Startup.cs file by using SetLicenseKey
method. This will license all the workbooks even across multiple Controllers.

Startup.cs

public Startup(IConfiguration configuration)
 {
 //Apply license before using the API, otherwise it will be considered
as no license.
 Workbook.SetLicenseKey(" Your License Key");

 }

To license an instance of the workbook, add the license key when an instance of workbook is created. Add
the following code in the Index() method of the controller:

GcExcelController.cs

public IActionResult Index()
 {
 //Apply license before using the API, otherwise it will be considered
as no license.
 var workbook = new Workbook("Your License Key");

 }

.NET CORE MVC APPLICATION

Upgrade to Latest Version
Follow one of the below to upgrade your GcExcel.NET license to the latest version:

If you are using the current major version, the existing license key is still valid.
If you are upgrading from a previous major version, a new license key will be needed.

The new license key must have been provided if you are under current Maintenance. But in case the Maintenance has
expired, please contact us.sales@grapecity.com to purchase the upgrade.

After receiving the new license key, follow the steps shared below:

1. Open an existing .NET core application created with GcExcel.NET previous license.
2. Right-click the project in Solution Explorer and choose Manage Nuget Packages.
3. In the Package Source on top right, select nuget.org
4. Click Updates tab on the top to display the list of all the installed Nuget packages.
5. On the left panel, select the Select all packages check box and click Update.
6. In the Preview Changes dialog, click Ok and choose I Accept in the next screen.
7. Switch to the code view and replace the old key with the new license key received via email.

To upgrade the license of a particular instance:

Documents for Excel, .NET Edition 21

Copyright © 2021 GrapeCity, Inc. All rights reserved.

mailto:us.sales@grapecity.com

var doc = new GcExcelDocument("new key");
To upgrade the license of all the instances:
GcExcelDocument.SetLicenseKey("new key");

Technical Support
If you have a technical question about this product, consult the following source:

Product Forum: https://www.grapecity.com/forums
Email: us.sales@grapecity.com

Redistribution
In order to deploy GcExcel .NET, you need to make sure that you have at least one of the following frameworks installed
on your system:

.NET Core 2.0+

.NET Framework 4.6.1
Mono 5.4

In order to distribute the application, make sure you meet the installation criteria specified in the System Requirements in
this documentation. Further, the users also need to have a valid Distribution License to successfully distribute the
application.

For more information about Distribution License, contact our Sales department using one of these methods:

World Wide Web site https://www.grapecity.com/

E-mail us.sales@grapecity.com

Phone (800) 858-2739 or (412) 681-4343 outside the U.S.A.

Fax (412) 681-4384

End User License Agreement
The GrapeCity licensing information, including the GrapeCity end-user license agreements, frequently asked licensing
questions, and the GrapeCity licensing model, is available online. For detailed information on licensing, see GrapeCity
Licensing. For GrapeCity end-user license agreement, see End-User License Agreement for GrapeCity Software.

Documents for Excel, .NET Edition 22

Copyright © 2021 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/forums
mailto:us.sales@grapecity.com
https://www.grapecity.com/
mailto:us.sales@grapecity.com
https://www.grapecity.com/licensing/grapecity/
https://www.grapecity.com/licensing/grapecity/
https://www.grapecity.com/legal/eula

Features
This section comprises the features available in GcExcel.

Worksheet
Work with cells, range and basic worksheet operations.

Workbook
Work with basic workbook operations.

Comments
Add or delete comments, show or hide comments, set rich text, comment layout or author of a comment.

Hyperlinks
Add, configure or delete hyperlinks.

Sort
Apply sorting and its various types.

Filter
Apply filtering and its several types.

Group
Apply grouping over data in rows or columns.

Conditional Formatting
Apply conditional formatting in a cell or range of cells.

Data Validations
Add, modify and delete data validations.

Data Binding
Bind data to sheet, cell or table columns.

Digital Signatures
Add, countersign, verify and delete digital signatures.

Formulas
Use formulas to carry complex calculations.

Custom Functions
Create custom functions to implement custom arithmetic logic.

Shapes and Pictures
Work with shapes and pictures in a worksheet.

Styles
Set styles to format cell appearance.

Barcodes
Supports 11 types of barcodes in worksheet, their JSON I/O and export to PDF.

Theme
Apply built-in or custom themes to change the workbook appearance.

Chart
Work with charts to display data graphically.

Table
Use tables to organize large amount of data efficiently.

Pivot Table
Use pivot table to perform analysis of complex information and summarize data.

Pivot Chart
Use pivot chart to display pivot table's data graphically.

Sparkline
Use sparklines to insert graphical illustration of trends in data.

Slicer
Use slicers to perform quick filtration of data in tables and pivot tables.

Documents for Excel, .NET Edition 23

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Print Settings
Configure print settings to manage printing options.

Logging
Capture debug, error, information and warning logs to locate issues and finding out their root cause.

Worksheet
A worksheet is a matrix of cells where you can enter and display data, analyse information, write formulas, perform
calculations and review results. The cells in a worksheet are defined by rows (represented by numeric characters like 1,2,3)
and columns ((represented by alphabetical letters like A,B,C etc.). For instance, in a worksheet, C6 represents the cell in
column C and row 6.

In GcExcel .NET, you can use the methods of IWorksheets to execute different tasks in a spreadsheet including insertion
of a new worksheet in the workbook, deletion of a worksheet from the collection, assigning an active sheet, and so much
more.

Managing a worksheet involves the following tasks:

Work with Worksheets
Range Operations
Freeze Panes in a Worksheet
Freeze Trailing Panes in a Worksheet
Customize Worksheets
Worksheet Views
Cell Types
Quote Prefix
Tags
Rich Text

Work with Worksheets
While working with worksheets, you can perform the following operations to accomplish several important tasks in a
workbook.

Access the Default Worksheet

Whenever a new workbook is created, an empty worksheet with the name Sheet1 is automatically added to the
workbook. This worksheet is known as the default worksheet. For every workbook, only one default worksheet is added to
it.

Refer to the following example code in order to access the default worksheet in your workbook.

C#

// Fetch the default WorkSheet
IWorksheet worksheet = workbook.Worksheets[0];

Add Multiple Worksheets

A workbook may contain any number of worksheets. You can add one or more worksheets before or after a specific sheet
in your workbook.

Documents for Excel, .NET Edition 24

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Refer to the following example code to insert multiple worksheets in a workbook.

C#

//Initialize the WorkBook and add multiple WorkSheets
IWorksheet worksheet = workbook.Worksheets.Add();
IWorksheet worksheet2 = workbook.Worksheets.AddAfter(worksheet);
IWorksheet worksheet3 = workbook.Worksheets.AddBefore(worksheet2);

Note: The Add method in IWorksheets interface has an overload with SheetType, which lets you add two types of
sheets, Worksheet or Chart sheet. By default, this method adds a Worksheet in the Workbook.

Activate a Worksheet

While working with multiple worksheets in a workbook, you may require to make the current sheet to workbook's active
sheet so as to execute certain operations on that particular worksheet. This can be done using the Activate method of the
IWorksheet interface.

Refer to the following example code to activate a worksheet.

C#

IWorksheet worksheet3 = workbook.Worksheets.Add();

//Activate new created worksheet.
worksheet3.Activate();

Access a Worksheet

All the worksheets within a workbook are stored in Worksheets collection. In order to access a specific worksheet within a
workbook, you can choose either of the two ways : using the Index property or using the Name property of the
IWorksheet interface.

Refer to the following example code to access a worksheet within the workbook.

C#

//Use sheet index to access the worksheet.
IWorksheet worksheet4 = workbook.Worksheets[0];

////Use sheet name to access the worksheet.
IWorksheet worksheet5 = workbook.Worksheets["SampleSheet5"];
//worksheet5.Name = "SampleSheet5";

Protect a Worksheet

A worksheet can be protected by transforming it into a read-only sheet so that the data lying in the cells cannot
be modified. The worksheet can be prevented from modification either by using a password or without it.

Protect worksheet from modification without password

A worksheet can be protected by setting the Protection property of the IWorksheet interface to true. Further, you can

Documents for Excel, .NET Edition 25

Copyright © 2021 GrapeCity, Inc. All rights reserved.

use the properties of the IProtectionSettings interface to explicitly setup your protected worksheet the way you want.
Later, if you want to remove protection, you can unprotect your worksheet by setting the Protection property to false.

Refer to the following example code to protect or unprotect a worksheet from modification without password.

C#

//protect worksheet, allow insert column.
worksheet3.Protection = true;
worksheet3.ProtectionSettings.AllowInsertingColumns = true;

//Unprotect worksheet.
worksheet3.Protection = false;

Protect Worksheet from Modification using Password

A worksheet can be made password protected to restrict modification by using the Protect method of IWorksheet
interface. The password is a case sensitive string which can be passed as a parameter to the Protect method.

Refer to the following example code to protect a worksheet from modification using password.

C#

// Initialize workbook
Workbook workbook = new Workbook();
// Fetch default worksheet
IWorksheet workSheet = workbook.Worksheets[0];

//Protects the worksheet with password
workSheet.Protect("Ygs_87@ytr");
// Save workbook to xlsx
workbook.Save(@"ProtectWorksheetWithPassword.xlsx", SaveFileFormat.Xlsx);

A password protected worksheet can be unprotected by using the Unprotect method of IWorksheet interface. The
correct password (password set in Protect method) needs to be passed as a parameter to the Unprotect method. In case,
the password is omitted or an incorrect password is passed, an exception message "Invalid Password" is thrown.

Refer to the following example code to unprotect a worksheet from modification using password.

C#

// Initialize workbook
Workbook workbook = new Workbook();
// Fetch default worksheet
IWorksheet workSheet = workbook.Worksheets[0];

workSheet.Protect("Ygs_87@ytr");
//Removes the above protection from the worksheet
workSheet.Unprotect("Ygs_87@ytr");
// Save workbook to xlsx
workbook.Save(@"UnprotectWorksheetWithPassword.xlsx", SaveFileFormat.Xlsx);

Documents for Excel, .NET Edition 26

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Delete Worksheet

You can remove one or more worksheets from a workbook. When you delete a worksheet, it automatically gets deleted
from the Worksheets collection.

Refer to the following example code to delete a specific sheet from the workbook.

C#

IWorksheet worksheet7 = workbook.Worksheets.Add();

//workbook must contain one visible worksheet at least, if delete the one visible
worksheet, it will throw exception.
worksheet7.Delete();

Copy and Move Worksheet

You can copy the current spreadsheet on which you're working as well as copy a worksheet between workbooks and then
move them to a specific location as per your custom requirements and preferences. This can be done by using the Copy()
method, the CopyAfter() method, the CopyBefore() method, the Move() method, the MoveBefore() method
and the MoveAfter() method of the IWorksheet interface. Using these methods, the worksheet can easily be copied and
relocated by placing it within the same workbook or another workbook as and when you want.

Refer to the following example code in order to copy a worksheet.

C#

// Initialize workbook
Workbook workbook = new Workbook();

// Fetch the active worksheet
IWorksheet worksheet = workbook.ActiveSheet;

object[,] data = new object[,]{
{"Name", "City", "Birthday", "Sex", "Weight", "Height", "Age"},
{"Bob", "newyork", new DateTime(1968, 6, 8), "male", 80, 180, 56},
{"Betty", "newyork", new DateTime(1972, 7, 3), "female", 72, 168, 45},
{"Gary", "NewYork", new DateTime(1964, 3, 2), "male", 71, 179, 50},
{"Hunk", "Washington", new DateTime(1972, 8, 8), "male", 80, 171, 59},
{"Cherry", "Washington", new DateTime(1986, 2, 2), "female", 58, 161, 34},
{"Coco", "Virginia", new DateTime(1982, 12, 12), "female", 58, 181, 45},
{"Lance", "Chicago", new DateTime(1962, 3, 12), "female", 49, 160, 57},
{ "Eva", "Washington", new DateTime(1993, 2, 5), "female", 71, 180, 81}};

// Set data
worksheet.Range["A1:G9"].Value = data;

// Copy the active sheet to the end of current workbook
var copy_worksheet = worksheet.Copy();
copy_worksheet.Name = "Copy of " + worksheet.Name;

Documents for Excel, .NET Edition 27

Copyright © 2021 GrapeCity, Inc. All rights reserved.

// Saving workbook to xlsx
workbook.Save(@"CopyWorkSheet.xlsx", SaveFileFormat.Xlsx);

Refer to the following example code in order to copy a worksheet between the workbooks.

C#

// Create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

// Create another source_workbook
Workbook source_workbook = new Workbook();

// Fetch the active worksheet
IWorksheet worksheet = source_workbook.ActiveSheet;
object[,] data = new object[,]{
{"Name", "City", "Birthday", "Sex", "Weight", "Height", "Age"},
{"Bob", "newyork", new DateTime(1968, 6, 8), "male", 80, 180, 56},
{"Betty", "newyork", new DateTime(1972, 7, 3), "female", 72, 168, 45},
{"Gary", "NewYork", new DateTime(1964, 3, 2), "male", 71, 179, 50},
{"Hunk", "Washington", new DateTime(1972, 8, 8), "male", 80, 171, 59},
{"Cherry", "Washington", new DateTime(1986, 2, 2), "female", 58, 161, 34},
{"Coco", "Virginia", new DateTime(1982, 12, 12), "female", 58, 181, 45},
{"Lance", "Chicago", new DateTime(1962, 3, 12), "female", 49, 160, 57},
{ "Eva", "Washington", new DateTime(1993, 2, 5), "female", 71, 180, 81}};

// Set data
worksheet.Range["A1:G9"].Value = data;

// Copy data of active sheet from source workbook to current workbook before Sheet1
var copy_worksheet = worksheet.CopyBefore(workbook.Worksheets[0]);
copy_worksheet.Name = "Copy of Sheet1";
copy_worksheet.Activate();

// Saving workbook to xlsx
workbook.Save(@"CopyWorkSheetBetweenWorkBooks.xlsx", SaveFileFormat.Xlsx);

Select Multiple Worksheets

GcExcel allows you to select multiple worksheets at once by using Select method of IWorksheets interface. The method
takes an optional parameter replace, which:

Replaces the current selection with the specified object when set to True (default value).
Extends the current selection to include any previously selected objects and the specified object when set to False.

The selected worksheets can also be retrieved by using SelectedSheets property of IWorkbook interface. In
addition, Excel files with multiple selected worksheets can be loaded, modified and saved back to Excel. GcExcel
displays following behavior when multiple worksheets are selected:

If a non-selected sheet is activated, the selected sheets are deselected.

Documents for Excel, .NET Edition 28

Copyright © 2021 GrapeCity, Inc. All rights reserved.

If a selected sheet is deleted, it is removed from selected sheets.
If all worksheets are selected and a worksheet is activated, it is set as the active sheet and all selected sheets are
deselected.
If a worksheet is added, copied or moved, the selected sheets are deselected.

Refer to the following example code to select multiple worksheets in a workbook.

C#

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

var sheet1 = workbook.ActiveSheet;
var sheet2 = workbook.Worksheets.Add();
var sheet3 = workbook.Worksheets.Add();

// Select sheet2 and sheet3
workbook.Worksheets[new[] { sheet2.Name, sheet3.Name }].Select();

// Write names of selected sheets to console
foreach (var sheet in workbook.SelectedSheets)
{
 Console.WriteLine(sheet.Name);
}

// Add sheet1 to selected sheets
sheet1.Select(replace: false);

// Write count of selected sheets to console
Console.WriteLine(workbook.SelectedSheets.Count);

//save to an excel file
workbook.Save("selectworksheets.xlsx");

Limitation

A valid license is required to select multiple worksheets in a workbook. Otherwise, the evaluation warning sheet will
overwrite the sheet selection and active sheet.

Range Operations
Range refers to a cell or a collection of cells and range operations are the operations performed on those cell collection
using single line of code. The Range property of IWorksheet allows you to execute multiple operations on cells,rows or
columns.

The operations that can be handled using Range property are as follows:

Access a Range
Access Areas in a Range

Documents for Excel, .NET Edition 29

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Access Cells, Rows and Columns in a Range
Get Address of Cell Range
Cut or Copy Cell Ranges
Cut or Copy Shape, Slicer, Chart and Picture
Find and Replace Data
Get Row and Column Count
Hide Rows and Columns
Insert And Delete Cell Ranges
Insert and Delete Rows and Columns
Merge Cells
Set Values to a Range
Set Custom Objects to a Range
Set Row Height and Column Width
Auto Fit Row Height and Column Width
Work with Used Range
Measure Digital Width

Access a Range
Range refers to an array of cells defined in a spreadsheet.

GcExcel allows users to define a range and then access the rows and columns within the range to perform certain tasks
like formatting of cells, merging of cells, insertion or deletion of cells along with other useful operations.

Refer to the following example code in order to access a range using different methods.

C#

//Use index to access cell A1.
worksheet.Range[0, 0].Interior.Color = Color.LightGreen;

//Use index to access range A1:B2
worksheet.Range[0, 0, 2, 2].Value = 5;

//Use string to access range.
worksheet.Range["A2"].Interior.Color = Color.LightYellow;
worksheet.Range["C3:D4"].Interior.Color = Color.Tomato;
worksheet.Range["A5:B7, C3, H5:N6"].Value = 2;

//Use index to access rows
worksheet.Rows[2].Interior.Color = Color.LightSalmon;

//Use string to access rows
worksheet.Range["4:4"].Interior.Color = Color.LightSkyBlue;

//Use index to access columns
worksheet.Columns[2].Interior.Color = Color.LightSalmon;

Documents for Excel, .NET Edition 30

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//Use string to access columns
worksheet.Range["D:D"].Interior.Color = Color.LightSkyBlue;

//Use Cells to access range.
worksheet.Cells[5].Interior.Color = Color.LightBlue;
worksheet.Cells[5, 5].Interior.Color = Color.LightYellow;

//Access all rows in worksheet
var allRows = worksheet.Rows.ToString();

//Access all columns in worksheet
var allColumns = worksheet.Columns.ToString();

//Access the entire sheet range
var entireSheet = worksheet.Cells.ToString();

Access Areas in a Range
While working with a large worksheet having non-contiguous selections, you can access specific areas in a multiple-area
range by using the indexer notation of the IAreas interface. The Count property of the IAreas interface represents the
area count (number of areas) of the multiple-area range.

The Areas property of the IRange interface represents all the selected ranges in the multiple area range.

Refer to the following example code to access areas in a range.

C#

//area1 is A5:B7.
var area1 = worksheet.Range["A5:B7,C3,H5:N6"].Areas[0];

//set interior color for area1
area1.Interior.Color = Color.Pink;

//area2 is C3.
var area2 = worksheet.Range["A5:B7,C3,H5:N6"].Areas[1];

//set interior color for area2
area2.Interior.Color = Color.LightGreen;

//area3 is H5:N6.
var area3 = worksheet.Range["A5:B7,C3,H5:N6"].Areas[2];

//set interior color for area3
area3.Interior.Color = Color.LightBlue;

Get Special Cell Ranges
Special cell ranges refer to the ranges containing specified data type or values. For example, cells containing comments, text values, formulas, blanks, constants, numbers etc.

Documents for Excel, .NET Edition 31

Copyright © 2021 GrapeCity, Inc. All rights reserved.

GcExcel allows you to get special cell ranges by using SpecialCells method of IRange interface. It takes the following enumerations as parameters:

SpecialCellType: Specifies the type of cells like formula, constant, blank etc.
SpecialCellsValue: Specifies cells with a particular type of value like numbers, text values etc.

Find Special Cell Ranges by Type

Refer to the following example code to find the range of special cells by specifying the type of cells.

C#

//create a new workbook
var workbook = new Workbook();

IWorksheet ws = workbook.ActiveSheet;

//prepare data
var rngA1D2 = new object[,] {
{ "Register", null, null, null},
{ "Field name", "Wildcard", "Validation error", "User input"}
};
ws.Range["A1:D2"].Value = rngA1D2;

var rngA3C6 = new object[,] {
{ "User name", "??*", "At least 2 characters"},
{ "Captcha", "?????", "5 characters required"},
{ "E-mail", "?*@?*.?*", "The format is incorrect"},
{ "Security code", "#######", "7 digits required"}
};
ws.Range["A3:C6"].Value = rngA3C6;

var rngA8D14 = new object[,] {
{ "User table", null, null, null},
{ "Id", "Name", "Email", "Banned"},
{ 1d, "User 1", "8zgnvlkp2@163.com", true},
{ 2d, "User 2", "b9fvaswb@163.com", false},
{ 3d, "User", "md78b", false},
{ 4d, "User 4", "1qasghjfg@163.com", false},
{ 5d, "U", "mncx23k8@163.com", false}
};
ws.Range["A8:D14"].Value = rngA8D14;

ws.Range["A1:D1"].Merge();
ws.Range["A1:D1"].HorizontalAlignment = HorizontalAlignment.Center;
ws.Range["A8:D8"].Merge();
ws.Range["A8:D8"].HorizontalAlignment = HorizontalAlignment.Center;

ws.Range["D3"].AddComment("Required");
ws.Range["D4"].AddComment("Required");
ws.Range["D5"].AddComment("Required");
ws.Range["D6"].AddComment("Required");

ws.Range["D10:D14"].Validation.Add(
 ValidationType.List, ValidationAlertStyle.Stop,
 ValidationOperator.Between, "True,False");

var condition = (IFormatCondition)ws.Range["C10:C14"].FormatConditions.Add(
 FormatConditionType.Expression, formula1: "=ISERROR(MATCH(B5,C10,0))");
condition.Font.Color = Color.Red;

var condition2 = (IFormatCondition)ws.Range["B10:B14"].FormatConditions.Add(
 FormatConditionType.Expression, formula1: "=LEN(B10)<=2");
condition2.Font.Color = Color.Red;

ws.Range["4:4"].EntireRow.Hidden = true;

IRange searchScope = ws.Range["1:14"];

// Find comments
var comments = searchScope.SpecialCells(SpecialCellType.Comments);

Documents for Excel, .NET Edition 32

Copyright © 2021 GrapeCity, Inc. All rights reserved.

// Find last cell
var lastCell = searchScope.SpecialCells(SpecialCellType.LastCell);

// Find visible
var visible = searchScope.SpecialCells(SpecialCellType.Visible);

// Find blanks
var blanks = searchScope.SpecialCells(SpecialCellType.Blanks);

// Find all format conditions
var allFormatConditions = searchScope.SpecialCells(SpecialCellType.AllFormatConditions);

// Find all validation
var allValidation = searchScope.SpecialCells(SpecialCellType.AllValidation);

// Find same format condition as B10
var sameFormatConditions = ws.Range["B10"].SpecialCells(SpecialCellType.SameFormatConditions);

// Find same validation as D10
var sameValidation = ws.Range["D10"].SpecialCells(SpecialCellType.SameValidation);

// Find merged cells
var merged = searchScope.SpecialCells(SpecialCellType.MergedCells);

// Output
ws.Range["A16"].Value = "Find result";
ws.Range["A16:C16"].Merge();
ws.Range["A16:C16"].HorizontalAlignment = HorizontalAlignment.Center;
ws.Range["A17:A25"].Value = new object[,] {
{"Comments"},
{"LastCell"},
{"Visible"},
{"Blanks"},
{"AllFormatConditions"},
{"AllValidation"},
{"SameFormatConditions B10"},
{"SameValidation D10"},
{"MergedCells"}
};
ws.Range["C17:C25"].Value = new object[,] {
{comments.Address},
{lastCell.Address},
{visible.Address},
{blanks.Address},
{allFormatConditions.Address},
{allValidation.Address},
{sameFormatConditions.Address},
{sameValidation.Address},
{merged.Address}
};

ws.UsedRange.EntireColumn.AutoFit();

//save to an excel file
workbook.Save("specialcellsfindmiscellaneous.xlsx");

Find Special Cells by Type in Existing File

Refer to the following example code to load an existing file, find special cells containing formulas and constants and change their background color.

C#

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

workbook.Open("FinancialReport.xlsx");

IRange cells = workbook.ActiveSheet.Cells;

// Find all formulas
var allFormulas = cells.SpecialCells(SpecialCellType.Formulas);

Documents for Excel, .NET Edition 33

Copyright © 2021 GrapeCity, Inc. All rights reserved.

// Find all constants
var allConstants = cells.SpecialCells(SpecialCellType.Constants);

// Change background color of found cells
allFormulas.Interior.Color = Color.LightGray;
allConstants.Interior.Color = Color.DarkGray;

//save to an excel file
workbook.Save("specialcellsinexistingfiles.xlsx");

Find Special Cells by Type and Values

Refer to the following example code to find special cells by specifying cell type and values.

C#

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

IWorksheet ws = workbook.ActiveSheet;

// Set data
ws.Range["A1"].Formula = "=\"Text \" & 1";
ws.Range["B1"].Formula = "=8*10^6";
ws.Range["C1"].Formula = "=SEARCH(A1,9)";
ws.Range["A2"].Value = "Text";
ws.Range["B2"].Value = 1;

// Find text formulas
var textFormula = ws.Cells.SpecialCells(SpecialCellType.Formulas, SpecialCellsValue.TextValues);

// Find number formulas
var numberFormula = ws.Cells.SpecialCells(SpecialCellType.Formulas, SpecialCellsValue.Numbers);

// Find error formulas
var errorFormula = ws.Cells.SpecialCells(SpecialCellType.Formulas, SpecialCellsValue.Errors);

// Find text values
var textValue = ws.Cells.SpecialCells(SpecialCellType.Constants, SpecialCellsValue.TextValues);

// Find number values
var numberValue = ws.Cells.SpecialCells(SpecialCellType.Constants, SpecialCellsValue.Numbers);

// Display search result
ws.Range["A4:E5"].Value = new object[,] {
{ "Text formula", "Number Formula", "Error Formula", "Text Value", "Number Value"},
{ textFormula.Address, numberFormula.Address, errorFormula.Address, textValue.Address, numberValue.Address}
};

ws.UsedRange.EntireColumn.AutoFit();

//save to an excel file
workbook.Save("specialcellsquickstart.xlsx");

Refer to the following example code to find special cell ranges by cell type and values. The formatting of cells is defined to easily distinguish between different types of special
cells.

C#

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

IWorksheet ws = workbook.ActiveSheet;

//prepare data
ws.Range["A1:F1"].Value = new object[,]{
{ "Test id", "Group id", "Group item id", "New test id", "Test result", "Error code"}
};

ws.Range["B2:C2"].Value = 1d;

Documents for Excel, .NET Edition 34

Copyright © 2021 GrapeCity, Inc. All rights reserved.

ws.Range["E2,E7,E12,E21,E27,E36,E40,E47:E48,E51,E59:E60,E70:E71,E80:E81,E88,E90:E91"].Value
= "Error 80073cf9";
ws.Range["G1:G2,I1:I7,H8:I8,A93:B93,E93:F93"].Value = null;

ws.Range["H1:H7"].Value = new object[,]{
{ "Constants"}, { "Formulas"}, { "String constants"}, { "Number constants"}, { "String formulas"}, { "Number formulas"}, { "Error
formulas"}
};

ws.Range["A2:A13"].Value = "Test00001";
ws.Range["A14:A67"].Value = "Test00153";
ws.Range["A68:A92"].Value = "Test05789";
ws.Range["E3:E5,E9:E11,E25:E26,E37:E38,E57,E75:E76,E86:E87"].Value = "Runtime Error c0000005";
ws.Range["E6,E13:E20,E28:E35,E41:E46,E52:E56,E61:E64,E72:E74,E77:E78,E82:E85,E89,E92"].Value
= "Passed";
ws.Range["E8,E22:E24,E39,E49:E50,E58,E65:E69,E79"].Value = "Deploy Error 80073cf9";

ws.Range["D2:D92"].FormulaR1C1 = "=\"X-Test-G\" & RC[-2] & \"-I\" & RC[-1]";
ws.Range["B3:B92"].FormulaR1C1 = "=IF(RC[-1]=R[-1]C[-1],R[-1]C,R[-1]C+1)";
ws.Range["C3:C92"].FormulaR1C1 = "=IF(RC[-2]=R[-1]C[-2],R[-1]C+1,1)";
ws.Range["F2:F92"].FormulaR1C1 = "=MID(RC[-1], SEARCH(\"Error \",RC[-1])+6,8)";

Color constantBgColor;
Color formulasBgColor;
Color stringForeColor;
Color errorForeColor;
unchecked
{
 constantBgColor = Color.FromArgb((int)0xFFDDEBF7);
 formulasBgColor = Color.FromArgb((int)0xFFF2F2F2);
 stringForeColor = Color.FromArgb((int)0xFF0000C0);
}
errorForeColor = Color.DarkRed;

var searchScope = ws.Range["$A:$F"];

// Find constant cells and change background color
IRange allConsts = searchScope.SpecialCells(SpecialCellType.Constants);
allConsts.Interior.Color = constantBgColor;

// Find formula cells and change background color
IRange allFormulas = searchScope.SpecialCells(SpecialCellType.Formulas);
allFormulas.Interior.Color = formulasBgColor;

// Find text constant cells and change foreground color
IRange textConsts = searchScope.SpecialCells(
 SpecialCellType.Constants, SpecialCellsValue.TextValues);
textConsts.Font.Color = stringForeColor;

// Find text formula cells and change foreground color
IRange textFormulas = searchScope.SpecialCells(
 SpecialCellType.Formulas, SpecialCellsValue.TextValues);
textFormulas.Font.Color = stringForeColor;

// Find number constant cells and change font weight
IRange numberConsts = searchScope.SpecialCells(
 SpecialCellType.Constants, SpecialCellsValue.Numbers);
numberConsts.Font.Bold = true;

// Find number formula cells and change font weight
IRange numberFormulas = searchScope.SpecialCells(
 SpecialCellType.Formulas, SpecialCellsValue.Numbers);
numberFormulas.Font.Bold = true;

// Find error formula cells and change foreground color and font style
IRange errorFormulas = searchScope.SpecialCells(
 SpecialCellType.Formulas, SpecialCellsValue.Errors);
errorFormulas.Font.Color = errorForeColor;
errorFormulas.Font.Italic = true;

Documents for Excel, .NET Edition 35

Copyright © 2021 GrapeCity, Inc. All rights reserved.

// Set sample cell styles
ws.Range["H1,H3,H4"].Interior.Color = constantBgColor;
ws.Range["H2,H5:H7"].Interior.Color = formulasBgColor;
ws.Range["H3,H5"].Font.Color = stringForeColor;
ws.Range["H4,H6"].Font.Bold = true;
ws.Range["H7"].Font.Color = errorForeColor;
ws.Range["H7"].Font.Italic = true;

ws.UsedRange.EntireColumn.AutoFit();

//save to an excel file
workbook.Save("specialcellsfindvaluesandformulas.xlsx");

Limitations

When the result contains cell ranges with multiple adjoining rectangles, the merging strategy in GcExcel is different from Excel.

For example, if you find number constants with Excel, the result is A2:C3,C4:D4

Whereas with GcExcel, the result is A2:B3,C2:C4,D4

Access Cells, Rows and Columns in a Range
You can access cells, rows and columns in a range by using the Cells property, Rows property and Columns property of
the IRange interface.

Refer to the following example code in order to access cells, rows and columns in a worksheet.

C#

var range = worksheet.Range["A5:B7"];

//Set value for cell A7.
range.Cells[4].Value = "A7";

//Cell is B6
range.Cells[1, 1].Value = "B6";

//Row count is 3 and range is A6:B6.
var rowCount = range.Rows.Count;
var row = range.Rows[1].ToString();

Documents for Excel, .NET Edition 36

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//Set interior color for row range A6:B6.
range.Rows[1].Interior.Color = Color.LightBlue;

//Column count is 2 and range is B5:B7.
var columnCount = range.Columns.Count;
var column = range.Columns[1].ToString();

//Set values for column range B5:B7.
range.Columns[1].Interior.Color = Color.LightSkyBlue;

//Entire rows are from row 5 to row 7
var entirerow = range.EntireRow.ToString();

//Entire columns are from column A to column B
var entireColumn = range.EntireColumn.ToString();

Get Address of Cell Range
In GcExcel, the address of cells or their ranges can be retrieved in A1 or R1C1 notation (both absolute and relative
references). The read-only Address property of IRange interface can be used to get the range reference in absolute A1
format. However, you can use the GetAddress method of IRange interface to define the reference notation and absolute
and relative references. It takes 4 optional parameters which when omitted, return the same value as Address property.

The below table elaborates how to use GcExcel API members to retrieve the address of cell[0,0] in different notations and
references.

Cell
Reference
Notation

Absolute Reference Relative Reference

A1

Address property

Output: A1

GetAddress method (set rowAbsolute and columnAbsolute
parameters to False)

Output: A1

R1C1

GetAddress method (set
referenceStyle parameter to R1C1)

Output: R1C1

GetAddress method (set referenceStyle parameter to R1C1,
rowAbsolute and columnAbsolute parameters to False)

Output: RC

Refer to the below example code to retrieve the address of a cell in different notations and references.

C#

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();
var mc = workbook.Worksheets["Sheet1"].Cells[0,0];

Documents for Excel, .NET Edition 37

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//get absolute address in A1 notation
Console.WriteLine(mc.Address);

//get row's relative and column's absolute address in A1 notation
Console.WriteLine(mc.GetAddress(rowAbsolute: false));

//get absolute address in R1C1 notation
Console.WriteLine(mc.GetAddress(referenceStyle: ReferenceStyle.R1C1));

//get relative address in R1C1 notation
Console.WriteLine(mc.GetAddress(referenceStyle: ReferenceStyle.R1C1,
 rowAbsolute: false,
 columnAbsolute: false,
 relativeTo: workbook.Worksheets[0].Cells[2, 2]));

Cut or Copy Cell Ranges
GcExcel .NET provides users with the ability to cut or copy a cell or a range of cells from a specific area and paste it into
another area within the same worksheet. Also, users can choose from multiple paste options and also combine different
paste options while copying the data from the cell range.

You can refer to the following sections in order to cut or copy data from the cell range.

Copy Cell Range
Working With Paste Options
Cut Cell Range

In order to cut or copy data across multiple sheets, refer to Cut or Copy Across Sheets.

Copy cell range

GcExcel allows you to copy a cell or a range of cells in the worksheets by calling Copy method of IRange. To copy a single
cell or a range of cells, specify the cell range to be copied, for example B3:D12.

GcExcel provides the following different ways to use the Copy method.

Example Description

Copy(sheet.Range["E5"]) This method copies data from cell range B3:D12 and pastes the data to cell E5
onwards.

Copy(sheet.Range["E5:G14"]) This method copies data from cell range B3:D12 and pastes the data in cell range
E5:G14. In case the range of cells copied does not fit into the destination cell range,
the data is lost.

Refer to the following example code in order to copy the cell range in a workbook.

C#

// Copy the data of the range of cells
worksheet.Range["B3:D12"].Copy(worksheet.Range["E5"]);

Documents for Excel, .NET Edition 38

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//Or
worksheet.Range["B3:D12"].Copy(worksheet.Range["E5:G14"]);

Working With Paste Options

Users can choose from several paste options while copying the data from the cell range. The PasteType enumeration can
be used to work with multiple paste options as described in the table shared below.

Option Description

Default This option can be used to paste all the cell data to the destination range except the
row heights and column widths.

Values This option can be used to paste only the cell value to the destination.

Formulas If you're working in a formula cell, this option can be used to paste the formula to the
destination . However, for a non-formula cell, this option pastes the cell value to the
destination.

Formats This option can be used to paste formats.

NumberFormats This option can be used to paste number formats.

RowHeights This option can be used to paste the row height to the destination.

ColumnWidths This option can be used to paste the column width to the destination.

Users can also combine the two different paste options. For instance - if users want to paste values and number formats
concurrently in the worksheet, then they can use combinations like : PasteType.Values | PasteType.NumberFormats
, PasteType.Formulas | PasteType.NumberFormats. Similarly other paste options can also be combined with each other.

Refer to the following example code in order to use the combination of paste options while copying data from the cell
range in a workbook and paste it to the destination.

C#

// Initialize workbook
Workbook workbook = new Workbook();

// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

// Set data of PC
worksheet.Range["A2"].Value = "PC";
worksheet.Range["A4:C4"].Value = new string[]
{
 "Device", "Quantity", "Unit Price"
};
worksheet.Range["A5:C10"].Value = new object[,]
{
 { "T540p", 12, 9850 },
 { "T570", 5, 7460 },
 { "Y460", 6, 5400 },

Documents for Excel, .NET Edition 39

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 { "Y460F", 8, 6240 }
};

// Set style
worksheet.Range["A2"].RowHeight = 30;
worksheet.Range["A2"].ColumnWidth = 40;
worksheet.Range["A2"].Font.Size = 20;
worksheet.Range["A2"].Font.Bold = true;
worksheet.Range["A4:C4"].Font.Bold = true;
worksheet.Range["A4:C4"].Font.Color = Color.White;
worksheet.Range["A4:C4"].Interior.Color =
Color.LightBlue;
worksheet.Range["A5:C10"].Borders[BordersIndex.InsideHorizontal].Color =
Color.Orange;
worksheet.Range["A5:C10"].Borders[BordersIndex.InsideHorizontal].LineStyle =
BorderLineStyle.DashDot;

// Copy only style and row height from cells A2:C10
worksheet.Range["H1"].Value = "Copy style & row height from previous cells.";
worksheet.Range["H1"].Font.Color = Color.Red;
worksheet.Range["H1"].Font.Bold = true;
worksheet.Range["A2:C10"].Copy(worksheet.Range["H2"],
PasteType.Formats | PasteType.ColumnWidths);

// Set data of mobile devices
worksheet.Range["H2"].Value = "Mobile";
worksheet.Range["H4:J4"].Value = new string[]
{
 "Device", "Quantity", "Unit Price"
};
worksheet.Range["H5:J10"].Value = new object[,]
{
 { "HW-P30", 20, 4200 },
 { "IPhone-X", 5, 9888 },
 { "IPhone-6s plus", 15, 6880 }
};

// Add new sheet
IWorksheet worksheet2 = workbook.Worksheets.Add();

// Copy only style of Cell A2:C10 to new sheet
worksheet.Range["A2:C10"].Copy(worksheet2.Range["A2"],
PasteType.Formats | PasteType.ColumnWidths);
worksheet2.Range["A3"].Value = "Copy style from sheet1.";
worksheet2.Range["A3"].Font.Color = Color.Red;
worksheet2.Range["A3"].Font.Bold = true;

// Saving workbook to xlsx

Documents for Excel, .NET Edition 40

Copyright © 2021 GrapeCity, Inc. All rights reserved.

workbook.Save(@"PasteOptionsEnhancements.xlsx", SaveFileFormat.Xlsx);

Cut cell range

GcExcel allows you to cut a cell or a range of cells in the worksheet by calling the Cut method of the IRange interface. To
cut a cell or the range of cells, specify the cell range to be moved, for example B3:D12.

GcExcel provide the following different ways to use Cut method.

Example Description

Cut(sheet.Range["E5"]) This method cuts the data from cell range B3:D12 and pastes the data to cell E5
onwards.

Cut(sheet.Range["E5:G14"]) This method cuts the data from cell range B3:D12 and pastes the data in cell range
E5:G14. In case the range of cells cut does not fit into the destination cell range,
the data is lost.

Refer to the following example code to cut a range of cells in the workbook.

C#

// Cut the data of the range of cell
worksheet.Range["B3:D12"].Cut(worksheet.Range["E5"]);
// Or
worksheet.Range["B3:D12"].Cut(worksheet.Range["E5:G14"]);

Cut or Copy Shape, Slicer, Chart and Picture
GcExcel allows users to cut or copy shapes, charts, slicers and pictures from one workbook to another and from one
worksheet to another.

In order to perform the copy operation, you can use the Copy() method of the IRange interface.

In order to perform the cut operation, you can use the Cut() method of the IRange interface.

Refer to the following example code to see how you can cut or copy shape, slicer, chart and picture.

C#

Workbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];

//Create a shape in worksheet, shape's range is Range["A7:B7"]
IShape shape = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 1, 1, 100, 100);

//Range["A1:D10"] contains Range["A7:B7"], copy a new shape to Range["C1:F7"]
worksheet.Range["A1:D10"].Copy(worksheet.Range["C1"]);
worksheet.Range["A1:D10"].Copy(worksheet.Range["C1:G9"]);

//Range["A1:D10"] contains Range["A7:B7"],cut a new shape to Range["C1:F7"]
worksheet.Range["A1:D10"].Cut(worksheet.Range["C1"]);

Documents for Excel, .NET Edition 41

Copyright © 2021 GrapeCity, Inc. All rights reserved.

worksheet.Range["A1:D10"].Cut(worksheet.Range["C1:G9"]);

// Cross-sheet cut, copy operation

Workbook workbook1 = new Workbook();
IWorksheet worksheet1 = workbook1.Worksheets[0];
IWorksheet worksheet2 = workbook1.Worksheets.Add();

//Create a shape in worksheet, shape's range is Range["A7:B7"]
IShape Shape = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 1, 1, 100, 100);

//Range["A1:D10"] contains Range["A7:B7"]. Copy a new shape to worksheet2's
Range["C1:F7"]
worksheet1.Range["A1:D10"].Copy(worksheet2.Range["C1"]);
worksheet1.Range["A1:D10"].Copy(worksheet2.Range["C1:G9"]);

//Range["A1:D10"] contains Range["A7:B7"]. Cut a new shape to worksheet2's
Range["C1:F7"]
worksheet1.Range["A1:D10"].Cut(worksheet2.Range["C1"]);
worksheet1.Range["A1:D10"].Cut(worksheet2.Range["C1:G9"]);

In order to duplicate a shape to the current worksheet, you can use the Duplicate() method of the IShape interface.

Refer to the following example code to see how you duplicate an existing shape, slicer, chart and picture.

C#

//Create shape,chart,slicer,picture
IShape Shape1 = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 100, 100, 200, 200);
IShape chart = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 300, 300, 300);
ISlicerCache cache1 = workbook.SlicerCaches.Add("Category", "cate1");
ISlicer slicer = cache1.Slicers.Add(workbook.Worksheets["Sheet1"], "cate1", "Category",
300, 300, 100, 200);
IShape picture = worksheet.Shapes.AddPicture("C:/Pictures", 1, 1, 100, 100);

//Duplicate shape
IShape newShape = Shape1.Duplicate();
//Duplicate chart
IShape newShape1 = chart.Duplicate();
//Duplicate slicer
slicer.Shape.Duplicate();
//Duplicate picture
IShape newPicture = picture.Duplicate();

Find and Replace Data
In a spreadsheet with hundreds of rows and columns, it becomes difficult to look for specific chunks of data across the

Documents for Excel, .NET Edition 42

Copyright © 2021 GrapeCity, Inc. All rights reserved.

entire worksheet and even more cumbersome to edit this information. The find and replace feature makes it easy for users
to locate information and replace it within seconds, thereby saving both time and efforts.

GcExcel .NET enables users to locate data in a cell range, find specific information (and all its occurrences) across the
worksheet and replace it with the desired information. Using this feature, you can find and replace specific values and
formulas in a range as per custom requirements and preferences with the help of the following methods.

The Find method of the IRange interface can be used to find the first, next or the previously matched cell range.
The Replace method of the IRange interface can be used to replace the data within the cell range.

Users can find basic information, locate cells with different formats, search data using various options, enumerate all
occurences across the worksheet, match the number of bytes occupied by the data and look for specific data in different
places including comments, formula and text. Further, you can replace the basic information, replace via executing the
search operation in loop and also replace using several options (like match case, match whole word and match byte).

Refer to the following example code in order to find cells in a target range starting from multiple positions and replace it
with the desired information.

C#

// This example finds the word "newyork" in multiple searchRanges & replaces it with
"NewYork"

// Initialize workbook
Workbook workbook = new Workbook();

// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

object[,] data = new object[,]{
{"Name", "City", "Birthday", "Sex", "Weight", "Height", "Age"},
{"Bob", "newyork", new DateTime(1968, 6, 8), "male", 80, 180, 56},
{"Betty", "newyork", new DateTime(1972, 7, 3), "female", 72, 168, 45},
{"Gary", "NewYork", new DateTime(1964, 3, 2), "male", 71, 179, 50},
{"Hunk", "Washington", new DateTime(1972, 8, 8), "male", 80, 171, 59},
{"Cherry", "Washington", new DateTime(1986, 2, 2), "female", 58, 161, 34},
{"Coco", "Virginia", new DateTime(1982, 12, 12), "female", 58, 181, 45},
{"Lance", "Chicago", new DateTime(1962, 3, 12), "female", 49, 160, 57},
{ "Eva", "Washington", new DateTime(1993, 2, 5), "female", 71, 180, 81}};

// Set data
worksheet.Range["A1:G9"].Value = data;
worksheet.Range["I10:P19"].Value = data;
worksheet.Range["A21:G29"].Value = data;

object what = "newyork";
object replacement = "NewYork";
ReplaceOptions ro = new ReplaceOptions();
ro.MatchCase = true;

// Specify multiple ranges to search in

Documents for Excel, .NET Edition 43

Copyright © 2021 GrapeCity, Inc. All rights reserved.

IRange searchRange = worksheet.Range["A1:G9, I10:P19"];

// Using Replace method to replace content in a specific range
searchRange.Replace(what, replacement, ro);

// Saving workbook to xlsx
workbook.Save(@"FindAndReplaceContentUsingReplaceOptions.xlsx", SaveFileFormat.Xlsx);

Refer to the following example code in order to find cells with the formula "SUM" and replace it with another formula
"PRODUCT" simultaneously.

C#

// This code finds the "SUM" keyword & replaces it with "PRODUCT" keyword in the
formula.

// Initialize workbook
Workbook workbook = new Workbook();

// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

// Set formulas
worksheet.Range["A1:H5"].Formula = "SUM(6,10)";

FindOptions fo = new FindOptions();
fo.LookIn = FindLookIn.Formulas;

IRange range = null;

// Specify range to search in formulas
IRange searchRange = worksheet.Range["A1:B4"];
do
{
 range = searchRange.Find("SUM", range, fo);
 if (range != null)
 {
 // using Replace method to replace formula in searched range
 range.Formula = range.Formula.Replace("SUM", "PRODUCT");
 }
} while (range != null);

// Saving workbook to xlsx
workbook.Save(@"FindAndReplaceFormulasUsingFindOptions.xlsx", SaveFileFormat.Xlsx);

Get Row and Column Count

Documents for Excel, .NET Edition 44

Copyright © 2021 GrapeCity, Inc. All rights reserved.

In a large worksheet, manually fetching the number of rows and columns can be a tedious task.

GcExcel allows users to quickly get the row and column count of the specific areas or all the areas in a range.

The Count property of the IRange interface represents the cell count of all the areas in a range.

Refer to the following example code in order to get the row count and column count in a worksheet.

C#

var range = worksheet.Range["A5:B7"];

//cell count is 6.
var cellcount = range.Count;
//cell count is 6.
var cellcount1 = range.Cells.Count;
//row count is 3.
var rowcount = range.Rows.Count;
//column count is 2.
var columncount = range.Columns.Count;

Hide Rows and Columns
You can choose whether to hide or show rows and columns in a worksheet by using the Hidden property of the IRange
interface.

Refer to the following example code in order to hide specific rows and columns in a worksheet.

C#

worksheet.Range["E1"].Value = 1;

//Hide row 2:6 using the Hidden property

worksheet.Range["2:6"].Hidden = true;

//Hide column A:D using the Hidden property
worksheet.Range["A:D"].Hidden = true;

Note: The range must either be entire rows or entire columns. The Hidden property doesn't work on a range of cells.

Insert And Delete Cell Ranges
GcExcel enables you to insert and delete a cell or a range of cells in order to help customization of worksheets as per your
requirements.

Insert cell range

GcExcel allows you to add a cell or a range of cells in a worksheets by calling the Insert method of IRange. To add a cell

Documents for Excel, .NET Edition 45

Copyright © 2021 GrapeCity, Inc. All rights reserved.

or a range of cells, specify the cell range, for example A3 for single cell or A3:A5 for a range of cells.

GcExcel provides following different options to insert a cell or a range of cells.

Method Description

Insert This method automatically inserts a cell or a range of cells.

Insert(InsertShiftDirection.Down) This method inserts the range of cells and shifts the existing range of cells in
downward direction.

Insert(InsertShiftDirection.Right) This method insert the range of cells and shifts the existing range of cells to the
right.

Refer to the following example code to see how you can insert a single cell and a cell range in the worksheet.

C#

//Insert the range of cell
worksheet.Range["A3"].Insert();

// Insert the range of cells
worksheet.Range["A3:A5"].Insert();

Refer to the following example code to see how you can insert cell range in a worksheet while specifying a direction to
shift the existing cells in required direction.

C#

//Insert the range of cells in desired direction
worksheet.Range["A3:B10"].Insert(InsertShiftDirection.Down);
worksheet.Range["A5:C5"].Insert(InsertShiftDirection.Right);

Delete cell range

GcExcel allow you to delete a cell or a range of cells in the worksheets by calling Delete method of IRange. To remove a
cell or a range of cells, specify the cell range, for example B4 for a single cell or B4:C4 for a range of cells.

GcExcel provide following different options to delete a cell or range of cells.

Method Description

Delete This method automatically deletes a cell or the range of cells.

Delete(DeleteShiftDirection.Left) This method deletes the range of cells and moves the existing range of cells to the
left.

Delete(DeleteShiftDirection.Up) This method delete the range of cells and move the existing range of cells in
upward direction.

Refer to the following example code to see how you can delete single cell or a cell range in a worksheet.

C#

Documents for Excel, .NET Edition 46

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//Delete the range of cell
worksheet.Range["B4"].Delete();

// Delete the range of cells
worksheet.Range["B4:C4"].Delete();

Refer to the following example code to see how you can delete a single cell or a range of cells in a worksheet while
specifying a direction to shift the existing cells in required direction.

C#

//Delete the range of cells from desired direction
worksheet.Range["B3:C8"].Delete(DeleteShiftDirection.Left);
worksheet.Range["B5:D5"].Delete(DeleteShiftDirection.Up);

Insert and Delete Rows and Columns
GcExcel provides you with the ability to insert or delete rows and columns in a worksheet.

Insert rows and columns

GcExcel allow you to add rows or columns in a worksheet by calling Insert method of IRange.

When rows are added, the existing rows in the worksheet are shifted in downward direction whereas when columns are
added, the existing columns in the worksheet are shifted to the right.

You can also use the EntireRow property to insert rows in a worksheet which includes all the columns. While inserting
rows using the EntireRow property, there is no need to provide the shift direction in the function parameters. If you
provide the same, it will be ignored.

Refer to the following example code to insert rows in a worksheet.

C#

//Insert rows
worksheet.Range["A3:A5"].EntireRow.Insert();
// OR
worksheet.Range["3:5"].Insert(InsertShiftDirection.Down);

You can also use the EntireColumn property to insert columns in the worksheet which includes all rows. While inserting
columns using the EntireColumn property, there is no need to provide the shift direction in the function parameters. If you
provide the same, it will be ignored.

Refer to the following example code to insert columns in a worksheet.

C#

//Insert column
worksheet.Range["A3:B5"].EntireColumn.Insert();
// OR
worksheet.Range["B:C"].Insert(InsertShiftDirection.Down);

Documents for Excel, .NET Edition 47

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Delete row and column

GcExcel allows you to delete rows or columns in the worksheet by calling Delete method of IRange.

When rows are deleted, the existing rows in the worksheet are shifted in upwards direction, whereas when columns are
deleted, the existing columns in the worksheet are shifted to the left.

Refer to the following example code to delete rows from the worksheet.

C#

//Delete rows
worksheet.Range["A3:A5"].EntireRow.Delete();
// OR
worksheet.Range["3:5"].Delete();

Refer to the following example code to delete columns from the worksheet.

C#

//Delete Columns
worksheet.Range["A3:A5"].EntireColumn.Delete();
// OR
worksheet.Range["A:A"].Delete(DeleteShiftDirection.Left);

Merge Cells
GcExcel allow you to merge several cells into a single cell using Merge method of IRange. When a cell range is merged,
the data of top left cell stays in the final merged cell, and the data of other cells in the given range is lost.

Also if all the cells within the given range are empty, the formatting of range's top left cell is applied to the merged cell.

Refer to the following example code to merge the range of cells.

C#

// merge the cell range A1:B4 into one single cell
worksheet.Range["A1:B4"].Merge();

Refer to the following example code to merge only the rows of the specified range of cell into one.

C#

// merge the cell range C1:D4 by one single cell in one row
worksheet.Range["C1:D4"].Merge(true);

Set Values to a Range
GcExcel allows users to specify custom values for the cell range by using the properties and methods of the IRange
interface.

Refer to the following example code in order to set custom values to cell ranges in the worksheet.

Documents for Excel, .NET Edition 48

Copyright © 2021 GrapeCity, Inc. All rights reserved.

C#

worksheet.Range["A:F"].ColumnWidth = 15;
object[,] data = new object[,]{
 {"Name", "City", "Birthday", "Eye color", "Weight", "Height"},
 {"Richard", "New York", new DateTime(1968, 6, 8), "Blue", 67, 165},
 {"Nia", "New York", new DateTime(1972, 7, 3), "Brown", 62, 134},
 {"Jared", "New York", new DateTime(1964, 3, 2), "Hazel", 72, 180},
 {"Natalie", "Washington", new DateTime(1972, 8, 8), "Blue", 66, 163},
 {"Damon", "Washington", new DateTime(1986, 2, 2), "Hazel", 76, 176},
 {"Angela", "Washington", new DateTime(1993, 2, 15), "Brown", 68, 145}
 };

// Set two-dimension array value to range A1:F7
worksheet.Range["A1:F7"].Value = data;

// Return a two-dimension array when get range A1:B7's value.
var result = worksheet.Range["A1:B7"].Value;

Set Row Height and Column Width
You can set the height of the rows and the width of the columns in a worksheet as per your preferences by using
the UseStandardHeight property and UseStandardWidth property of the IRange interface respectively.

You can use the ColumnWidth property to set custom width in characters for the individual columns of a range. In order
to set custom width in pixels, you can use the ColumnWidthInPixel property of the IRange interface.

You can also set custom height of the individual rows of a range in points and in pixels by using the RowHeight property
and RowHeightInPixel property of the IRange interface.

In order to specify custom total height and total width, you can use the Height (in points), HeightInPixel (in
pixels), Width (in characters) and WidthInPixel (in pixels) properties of the IRange interface.

Refer to the following example code in order to customize the row height and column width in a worksheet.

C#

//set row height for row 1:2.
worksheet.Range["1:2"].RowHeight = 50;

//set column width for column C:D.
worksheet.Range["C:D"].ColumnWidth = 20;

Auto Fit Row Height and Column Width
GcExcel .NET provides support for automatic adjustment of row height and column width based on the data present in the
rows and columns. The Auto Fit feature adjusts row height and column width so that every value in the rows or columns
fits perfectly.

Documents for Excel, .NET Edition 49

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Advantage of Using Auto Fit Feature

When users need to work with spreadsheets containing huge amounts of data, some of the cells may contain values that
appear cut off (if the cell width or height is too small) or contain extra spaces (if the cell width or height is too large). To
avoid this anomaly and make the spreadsheets look much cleaner, GcExcel .NET enables users to automatically adjust the
width of the columns and the height of the rows so as to auto fit the content inside the cell.

Further, the Auto fit feature is useful especially when you don't know how long every value is, how much space it will
occupy and you also don't want to scroll through the entire spreadsheet to manually fix the row heights and column
widths across the worksheet.

The following points should be kept in mind while working with the auto fit feature in GcExcel .NET:

This feature supports the auto adjustment of column width and row height of specific cell ranges only.
Users can use the AutoFit() method of the IRange interface in order to auto fit row height and column width.
If the type of the cell range used is a column (IRange.Columns/IRange.EntireColumn etc.), then only the column
width will be adjusted to best fit but the row height would not be changed.

Refer to the following example code in order to automatically fit the row height and column width in a worksheet.

C#

// Initialize workbook
Workbook workbook = new Workbook();

// Fetch the active worksheet
IWorksheet worksheet = workbook.Worksheets[0];

// Auto fit column width of range 'A1'
worksheet.Range["A1"].Value = "Grapecity Documents for Excel";
worksheet.Range["A1"].Columns.AutoFit();

// Auto fit row height of range 'B2'
worksheet.Range["B2"].Value = "Grapecity";
worksheet.Range["B2"].Font.Size = 20;
worksheet.Range["B2"].Rows.AutoFit();

// Auto fit column width and row height of range 'C3'
worksheet.Range["C3"].Value = "Grapecity Documents for Excel";
worksheet.Range["C3"].Font.Size = 32;
worksheet.Range["C3"].AutoFit();

// Saving the workbook to xlsx
workbook.Save("AutoFitRowHeightColumnWidth.xlsx");

Note: The Auto fit feature has the following limitations :

1) In a merged cell, the AutoFit methods will not be applied. This behavior is same as in Excel.

2) If the text in a cell is wrapped, the Auto fit for columns will not be applied to the cell.

 3) The AutoFit methods are time-consuming and impact the performance of the spreadsheet. In order to ensure the

Documents for Excel, .NET Edition 50

Copyright © 2021 GrapeCity, Inc. All rights reserved.

efficiency of spreadsheet applications, users should not call the these methods too frequently.

Work with Used Range
Used Range is a bounding rectangle of used cells that returns the IRange object of used range on the specified
worksheet.

GcExcel provides users with an option to work with the already used range of cells in a worksheet in the following two
ways:

Work with worksheet's used range
Work with feature related used range

Work with worksheet's used range

To work with worksheet's used range, you need to first get the used range by using the UsedRange property of the
IWorksheet interface. After you accomplish this, you can customize the used range using the properties of the IRange
interface.

Refer to the following example code in order to get used range and customize it.

C#

worksheet.Range["H6:M7"].Value = 1;
worksheet.Range["J9:J10"].Merge();

//Used Range is "H6:M10"
var usedrange = worksheet.UsedRange;

//Customize the used range
usedrange.HorizontalAlignment = HorizontalAlignment.Center;

Work with feature related used range

To work with feature related used range, you need to first get the feature related used range by using the GetUsedRange
method of the IWorksheet interface. After you accomplish this, you can customize the feature related used range using
the properties of the IRange interface.

Refer to the following example code to get feature related used range and customize it.

C#

IComment commentA1 = worksheet.Range["A1"].AddComment("Range A1's comment.");
IComment commentA2 = worksheet.Range["A2"].AddComment("Range A2's comment.");

//Comment used range is "A1:D5", contains comment shape plot area
IRange commentUsedRange = worksheet.GetUsedRange(UsedRangeType.Comment);

//Customize feature related used range
commentUsedRange.Interior.Color = Color.LightYellow;

Documents for Excel, .NET Edition 51

Copyright © 2021 GrapeCity, Inc. All rights reserved.

After you get the used range of cells using any of the above methods, you can customize it as per your preferences. For
instance- you can set the row height and column width; tweak the row hidden and column hidden settings; perform
certain useful operations like group and merge; add value, formula and comment to the used range in your worksheet.

Measure Digital Width
If you want to get or set column width by pixels, the result may appear different in GcExcel and Excel as both of them
store column width by characters. To overcome this issue, GcExcel supports measuring digital width in order to calculate
the accurate pixel value of a single digit.

GcExcel provides IGraphicsInfo interface in its API which can be implemented to know the accurate pixel value of a single
digit. The GetDigitWidth method in IGraphicsInfo interface measures the text (or characters) based on different font
attributes like font family, font size, font style etc. GcExcel API also supports GUI frameworks, such as WPF and Windows
Forms.

Refer to the following example code which calculates the pixel value and exports the column width correctly in Excel.

C#

class FakeGraphicsInfo : IGraphicsInfo
{
 public double Width { get; set; }
 public int GetDigitWidthCount { get; set; }
 public double GetDigitWidth(TextFormatInfo textFormat)
 {
 GetDigitWidthCount++;
 return Width;
 }
}

private void Form1_Load(object sender, EventArgs e)
{
 var workbook = new Workbook();
 var theme = new Theme("custom");
 theme.ThemeFontScheme.Major[FontLanguageIndex.Latin].Name = "宋体";
 theme.ThemeFontScheme.Minor[FontLanguageIndex.Latin].Name = "宋体";
 workbook.Theme = theme;
 var sheet = workbook.ActiveSheet;
 var fakeGraphicsInfo = new FakeGraphicsInfo { Width = 8 };
 workbook.GraphicsInfo = fakeGraphicsInfo;
 sheet.StandardWidthInPixel = 20;
 sheet.Columns[0].ColumnWidthInPixel = 20;
 sheet.Range[1, 1].Value = "abc";
 workbook.Save("ColumnWidth.xlsx");
}

Note: Please note below points:

Documents for Excel, .NET Edition 52

Copyright © 2021 GrapeCity, Inc. All rights reserved.

The above sample requires WinForms application to build and run.
The result of GetDigitWidth method is environment-dependent. Sometimes, it returns different results when
running on different computers.

Freeze Panes in a Worksheet
GcExcel provides the ability to freeze panes in a worksheet. This feature enables users to keep some specific rows or
columns visible while scrolling through the rest of the sheet. This functionality is particularly useful when there is a large
amount of data that spans across a number of rows or columns.

Additionally, it allows to set the custom color of lines of frozen panes. However, these colors are only visible while
interacting with SpreadJS by doing JSON I/O and are not visible in Excel or PDF.

Freeze Panes

You can freeze panes in a worksheet using the FreezePanes() method of the IWorksheet interface. This method will
freeze the split panes according to the incoming row index and column index parameters.

In order to represent the row of freeze position and the column of freeze position, you can use the FreezeRow
and FreezeColumn properties respectively.

Refer to the following example code to see how you can freeze panes in a worksheet.

C#

// Adding worksheets to the workbook
IWorksheet worksheet1 = workbook.Worksheets[0];
IWorksheet worksheet2 = workbook.Worksheets.Add();
IWorksheet worksheet3 = workbook.Worksheets.Add();
IWorksheet worksheet4 = workbook.Worksheets.Add();
//Freeze Panes
worksheet1.FreezePanes(2, 3);
worksheet2.FreezePanes(0, 2);
worksheet3.FreezePanes(3, 0);
worksheet4.FreezePanes(3, 5);

You can also set custom color of lines of frozen panes using the FrozenLineColor property of IWorksheet interface.

Refer to the following example code to set blue color for lines of frozen panes in a worksheet.

C#

//Use sheet index to get worksheet
IWorksheet worksheet = workbook.Worksheets[0];

//Freeze panes
worksheet.FreezePanes(5, 5);

//Set frozen line color as blue
worksheet.FrozenLineColor = Color.Blue;

Documents for Excel, .NET Edition 53

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//Export workbook to json string and save to ssjson
System.IO.File.WriteAllText("frozenlinecolor.ssjson", workbook.ToJson());

Unfreeze Panes

You can unfreeze the split panes using the UnfreezePanes() method of the IWorksheet interface.

Refer to the following example code to unfreeze panes in a worksheet.

C#

//UnFreeze Panes
worksheet4.UnfreezePanes();

Freeze Trailing Panes in a Worksheet
GcExcel allows users to freeze trailing panes in a worksheet. The trailing panes correspond to the rows and columns at the
extreme bottom and right of the worksheet. Hence, it enables users to keep those specific rows or columns visible while
scrolling through the rest of the sheet.

However, the frozen trailing panes are only visible while interacting with SpreadJS by doing JSON I/O and are not visible in
Excel or PDF.

Freeze Trailing Panes

The trailing panes in a worksheet can be frozen by using the FreezeTrailingPanes method of IWorksheet interface which
takes row and column positions as parameters. The number of frozen rows and column can also be retrieved by using
the FreezeTrailingRow and FreezeTrailingColumn properties respectively.

Refer to the following example code to freeze trailing panes and retrieve the number of trailing frozen rows and columns
in a worksheet.

C#

//create a new workbook
var workbook = new Workbook();

//use sheet index to get worksheet
IWorksheet worksheet = workbook.Worksheets[0];

//freeze trailing pane
worksheet.FreezeTrailingPanes(2, 3);

//get the number of frozen trailing rows and columns
Console.WriteLine("Number of trailing rows and columns" + worksheet.FreezeTrailingRow +
worksheet.FreezeTrailingColumn);

System.IO.File.WriteAllText("freezetrailingrowscolumns.ssjson", workbook.ToJson());

Unfreeze Trailing Panes

Documents for Excel, .NET Edition 54

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Similarly, the frozen trailing panes can be unfrozen by using the UnfreezeTrailingPanes method of IWorksheet interface.

Refer to the following example code to unfreeze trailing panes in a worksheet.

C#

//create a new workbook
var workbook = new Workbook();

//use sheet index to get worksheet
IWorksheet worksheet = workbook.Worksheets[0];

//freeze trailing pane
worksheet.FreezeTrailingPanes(2, 3);

//unfreeze trailing pane
worksheet.UnfreezeTrailingPanes();

System.IO.File.WriteAllText("unfreezetrailingrowscolumns.ssjson", workbook.ToJson());

Customize Worksheets
GcExcel allows you to customize worksheets using the properties of IWorksheet Interface. You can perform useful
operations like customizing gridlines to modify row and column headers, setting color for the tabs, or setting default
height and width for rows and columns, and so much more.

Customizing a worksheet to modify the default settings involves the following tasks:

Configure display
Set the tab color
Set visibility
Set background image
Define standard height and width

Configure display

You can modify the display settings of your worksheet from left to right or right to left.

Refer to the following example code to configure the display of your worksheet in GcExcel.

C#

// Fetch the default WorkSheet
IWorksheet worksheet = workbook.Worksheets[0];

// Assign the values to the cells
worksheet.Range["B1"].Value = "ABCD";
worksheet.Range["B2"].Value = 3;
worksheet.Range["C1"].Value = "GrapeCity Documents";
worksheet.Range["C2"].Value = 4;

Documents for Excel, .NET Edition 55

Copyright © 2021 GrapeCity, Inc. All rights reserved.

worksheet.Range["D1"].Value = "GcExcel";
worksheet.Range["D2"].Value = "ABCD";

// Set the specified sheet to be displayed from left to right.
worksheet.SheetView.DisplayRightToLeft = true;

Set the tab color

You can change the default tab color of your worksheet using the TabColor property of the IWorksheet interface.

Refer to the following example code to set the tab color for your worksheet.

C#

// Set the tab color of the specified sheet as green.
worksheet.TabColor = Color.Green;

Set visibility

You can show or hide your worksheet using the Visible property of the IWorksheet interface.

Refer to the following example code to set visibility of your worksheet.

C#

// Adding new sheet and set the visibility of the sheet as Hidden.
IWorksheet worksheet1 = workbook.Worksheets.Add();
worksheet1.Visible = Visibility.Hidden;

Set background image

You can set a custom background image to your worksheet using the BackgroundPicture property of the IWorksheet
interface. With this feature, users can insert any background image to the worksheet including their organization
logo, custom watermark or a wallpaper of their choice without any hassles.

Refer to the following example code in order to set the custom background image in your worksheet.

C#

// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

// Set Background Image
worksheet.BackgroundPicture = File.ReadAllBytes(@"GrapeCityLogo.png");

Define standard width and height

You can define the standard height and width of your worksheet using the StandardHeight and StandardWidth
properties of the IWorksheet interface, respectively.

Refer to the following example code to define the standard width and height as per your requirements.

C#

Documents for Excel, .NET Edition 56

Copyright © 2021 GrapeCity, Inc. All rights reserved.

// Setting the height and width of the wokrsheet
worksheet.StandardHeight = 20;
worksheet.StandardWidth = 40;

Worksheet Views
GcExcel offers customization of several display settings that are applied to a worksheet.

In order to view a worksheet as per their own preferences, users can use the properties and methods of the IWorksheet
interface, IPane interface and IWorksheetView interface.

The following table describes some of the properties and methods that can be used to customize the view settings while
working with worksheets.

Property/Method Description

IWorksheet.SplitPanes(int row, int
column)

This method can be used to lock the rows and columns in a worksheet in
order to divide the worksheet into multiple areas that can be scrolled
independently. Users need to provide the cell index as parameters in this
method to specify the location where they want the split.

IWorksheet.UnsplitPanes(int row, int
column)

This method can be used to unsplit the split panes. Using this method is
similar to using IWorksheet.SplitPanes(0,0).

IWorksheet.SplitRow /

IWorksheet.SplitColumn

This method gets the split distances (row count and column count) from
top (in case of row) or left (in case of column).

IWorksheet.Panes A range object that represents the frozen or split panes of the worksheet.

IWorksheet.ActivePane This property can be used to get the active pane in a worksheet.

IPane.Activate() This method activates the current pane.

IPane.Index This property can be used to get the index of the current pane in
IWorksheet.Panes.

IPane.ScrollColumn /

IPane.ScrollRow

This property can be used to get or set the top left cell position of the
current pane.

IWorksheet.SheetView This property can be used to get the view of the worksheet.

IWorksheetView.Zoom This property can be used to get and set a variant numeric value that
represents the display size of the worksheet as a percentage where the 100
equals normal size, 200 equals double size, and so on.

IWorksheetView.GridlineColor This property can be used to get and set the gridline color.

IWorksheetView.ScrollColumn This property can be used to get and set the number of the leftmost
column in the worksheet.

IWorksheetView.ScrollRow This property can be used to get and set the number of the row that
appears at the top of the worksheet.

IWorksheetView.DisplayRightToLeft This property can be used to get and set whether the specified worksheet is

Documents for Excel, .NET Edition 57

Copyright © 2021 GrapeCity, Inc. All rights reserved.

displayed from right to left instead of from left to right.

IWorksheetView.DisplayFormulas This property can be used to get and set whether the worksheet displays
formulas.

IWorksheetView.DisplayGridlines This property can be used to get and set whether the gridlines are
displayed.

IWorksheetView.DisplayVerticalGridlines This property can be used to get and set whether the vertical gridlines are
displayed.

IWorksheetView.DisplayHorizontalGridlines This property can be used to get and set whether the horizontal gridlines
are displayed.

IWorksheetView.DisplayHeadings This property can be used to get and set whether the headers are
displayed.

IWorksheetView.DisplayOutline This property can be used to get and set whether the outline symbols are
displayed.

IWorksheetView.DisplayRuler This property can be used to get and set whether a ruler is displayed for the
specified worksheet.

IWorksheetView.DisplayWhitespace This property can be used to get and set whether the whitespace is
displayed.

IWorksheetView.DisplayZeros This property can be used to get and set whether the zero values are
displayed.

The following code snippet shows how to set custom view for a worksheet using different properties of the IWorksheet
interface.

C#

//Set worksheet view

IWorkbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];
var custom_view = worksheet.SheetView;
custom_view.Zoom = 200;
custom_view.GridlineColor = Color.Red;
custom_view.ScrollColumn = 10;
var scrollRow = custom_view.ScrollRow;

The following code snippet shows how to use the SplitPanes() method to split the worksheet into panes.

C#

//Split worksheet using SplitPanes() method

Workbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];

Documents for Excel, .NET Edition 58

Copyright © 2021 GrapeCity, Inc. All rights reserved.

worksheet.SplitPanes(worksheet.Range["A5"].Row, worksheet.Range["A5"].Column);

var splitRow = worksheet.SplitRow;
var splitColumn = worksheet.SplitColumn;

The following code snippet shows how to use the DisplayVerticalGridlines and DisplayHorizontalGridlines properties
to display the vertical and horizontal gridlines of a worksheet. These gridlines are only visible while interacting with
SpreadJS by doing JSON I/O and are not visible in Excel or PDF.

C#

//create a new workbook
var workbook = new Workbook();

IWorksheet worksheet = workbook.Worksheets[0];

worksheet.Range["A10"].Value = 10;

//Set to not show horizontal gridlines
 worksheet.SheetView.DisplayHorizontalGridlines = false;

//Set to show vertical gridlines
worksheet.SheetView.DisplayVerticalGridlines = true;

//Export workbook to json string and save to ssjson
System.IO.File.WriteAllText("gridlines.ssjson", workbook.ToJson());

Note: If the value of DisplayGridlines is set, DisplayVerticalGridlines and DisplayHorizontalGridlines are also set
to the same value.

Cell Types
GcExcel supports Button, CheckBox, ComboBox, and Hyperlink cell types. These cell types define the type of
information in a cell and its behavior.

Cell types can be defined for a cell, range of cells, row, column or a worksheet. GcExcel library provides the CellType
property in IRange interface to get or set cell type for a cell or range of cells. If the cell types are different in a range of
cells, the cell type of the top-left cell of the range will be returned. The CellType property of IWorksheet interface can be
used to get or set cell type for a worksheet. Further, the EntireColumn and EntireRow property of IRange interface can
be used to get or set cell types for columns and rows respectively.

Note: Cell types are not supported by Excel. So, these are lost after saving to Excel files. But the cell types work well
with SpreadJS, and is retained during JSON I/O with SpreadJS.

Button Cell Type

Refer to the following code to create a Button cell type:

Documents for Excel, .NET Edition 59

Copyright © 2021 GrapeCity, Inc. All rights reserved.

https://help.grapecity.com/spread/SpreadJSWeb/celltypes.html

C#

public void ButtonCellTypes()
{
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 //Creating Button cell type
 ButtonCellType button = new ButtonCellType();
 button.Text = "Click Me..!!";
 button.ButtonBackColor = "LightBlue";
 button.MarginLeft = 10;
 worksheet.Range["A1:B2"].CellType = button;

 // Saving workbook to Pdf
 workbook.Save(@"ButtonCellTypes.pdf", SaveFileFormat.Pdf);

}

CheckBox Cell Type

Refer to the following code to create a CheckBox cell type:

C#

public void CheckBoxCellTypes()
{
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 // Creating CheckBoxCellType
 CheckBoxCellType checkBox = new CheckBoxCellType();
 checkBox.Caption = "Caption";
 checkBox.TextTrue = "True";
 checkBox.TextFalse = "False";
 checkBox.IsThreeState = false;
 worksheet.Range["A1:C3"].CellType = checkBox;

 worksheet.Range["A1"].Value = true;
 worksheet.Range["B2"].Value = true;

 // Saving workbook to Pdf
 workbook.Save(@"CheckBoxCellTypes.pdf", SaveFileFormat.Pdf);

Documents for Excel, .NET Edition 60

Copyright © 2021 GrapeCity, Inc. All rights reserved.

}

ComboBox Cell Type

Refer to the following code to create a ComboBox cell type:

C#

public void ComboCellTypes()
{
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 // Creating ComboBoxCellType
 ComboBoxCellType comboBox = new ComboBoxCellType();
 comboBox.EditorValueType = EditorValueType.Value;

 ComboBoxCellItem comboItem = new ComboBoxCellItem();
 comboItem.Value = "US";
 comboItem.Text = "United States";
 comboBox.Items.Add(comboItem);

 comboItem = new ComboBoxCellItem();
 comboItem.Value = "CN";
 comboItem.Text = "China";
 comboBox.Items.Add(comboItem);

 comboItem = new ComboBoxCellItem();
 comboItem.Value = "JP";
 comboItem.Text = "Japan";
 comboBox.Items.Add(comboItem);

 worksheet.Range["A1:B2"].CellType = comboBox;
 worksheet.Range["A1"].Value = "CN";

 // Saving workbook to Pdf
 workbook.Save(@"ComboCellTypes.pdf", SaveFileFormat.Pdf);
}

Hyperlink Cell Type

Refer to the following code to create a Hyperlink cell type:

C#

public void HyperlinkCellTypes()
{

Documents for Excel, .NET Edition 61

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 // Creating HyperLinkCellType
 HyperLinkCellType hyperlinkCell = new HyperLinkCellType();
 hyperlinkCell.Text = "GrapeCity Website";
 hyperlinkCell.LinkColor = "Blue";
 hyperlinkCell.LinkToolTip = "GrapeCity Website";
 hyperlinkCell.VisitedLinkColor = "Green";
 hyperlinkCell.Target = HyperLinkTargetType.Blank;

 worksheet.Range["A1"].CellType = hyperlinkCell;
 worksheet.Range["A1"].Value = "https://www.grapecity.com/";

 // Saving workbook to Pdf
 workbook.Save(@"HyperlinkCellTypes.pdf", SaveFileFormat.Pdf);
}

Range Template Cell
GcExcel supports Range Template cell type which allows you to specify a cell range in the worksheet which acts as a
range template. The range template is considered as a single cell and can be applied to a cell or cell range, as desired. The
data into the range template can be loaded from a data source.

This feature is particularly useful when you want to display some specific ranges of data with identical structures (as
displayed in the screenshots below) without having to configure the same style for multiple ranges again and again.

The above Range Template when applied to a cell range A1:B2 and is loaded with data from data source looks like below:

Documents for Excel, .NET Edition 62

Copyright © 2021 GrapeCity, Inc. All rights reserved.

The following steps must be performed to create a Range Template cell type:

1. Create a Range Template: Design the layout of Range Template in a worksheet. The template can be bound to
data by using BindingPath property.

2. Configure Data: Configure a Data source to bind the template.
3. Create & Apply Range Template cell type: Create a Range Template cell type by using RangeTemplateCellType

method and apply it to the desired cell range.

Refer to the following code to create a Range Template cell type.

C#

 //create a new workbook
 var workbook = new GrapeCity.Documents.Excel.Workbook();
 GrapeCity.Documents.Excel.Workbook.ValueJsonSerializer = new
CustomObjectJsonSerializer();

 var sheet1 = workbook.ActiveSheet;
 // Step 1. Create a worksheet for designing range template
 var sheet2 = workbook.Worksheets.Add();

 // Step 2. Configure Data
 var record1 = new PersonalAssets
 {
 Name = "Peyton",

Documents for Excel, .NET Edition 63

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 Savings = 25000,
 Shares = 55000,
 Stocks = 15000,
 House = 250000,
 Bonds = 11000,
 Car = 7500
 };
 var record2 = new PersonalAssets
 {
 Name = "Icey",
 Savings = 30000,
 Shares = 45000,
 Stocks = 25000,
 House = 20000,
 Bonds = 18000,
 Car = 75000
 };
 var record3 = new PersonalAssets
 {
 Name = "Walter",
 Savings = 20000,
 Shares = 4000,
 Stocks = 95000,
 House = 30000,
 Bonds = 10000,
 Car = 56000
 };
 var record4 = new PersonalAssets
 {
 Name = "Chris",
 Savings = 70000,
 Shares = 85000,
 Stocks = 35000,
 House = 20000,
 Bonds = 15000,
 Car = 45000
 };

 // Set binding path for cell.
 sheet2.Range["A1:C1"].Merge();
 sheet2.Range["A1:C1"].HorizontalAlignment = HorizontalAlignment.Center;
 sheet2.Range["A1:C1"].VerticalAlignment = VerticalAlignment.Center;

 sheet2.Range["A1"].BindingPath = "Name";
 sheet2.Range["A1"].Font.Name = "Arial";
 sheet2.Range["A1"].Font.Size = 15;
 sheet2.Range["1:1"].RowHeight = 30;
 sheet2.Range["A2"].Value = "Asset Type";

Documents for Excel, .NET Edition 64

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 sheet2.Range["B2"].Value = "Amount";
 sheet2.Range["C2"].Value = "Rate";
 sheet2.Range["A3"].Value = "Savings";
 sheet2.Range["A3"].Interior.Color = Color.FromArgb(145, 159, 129);
 sheet2.Range["B3"].BindingPath = "Savings";
 sheet2.Range["C3"].Formula = "=B3/B9";
 sheet2.Range["A4"].Value = "Shares";
 sheet2.Range["A4"].Interior.Color = Color.FromArgb(215, 145, 62);
 sheet2.Range["B4"].BindingPath = "Shares";
 sheet2.Range["C4"].Formula = "=B4/B9";
 sheet2.Range["A5"].Value = "Stocks";
 sheet2.Range["A5"].Interior.Color = Color.FromArgb(206, 167, 34);
 sheet2.Range["B5"].BindingPath = "Stocks";
 sheet2.Range["C5"].Formula = "=B5/B9";
 sheet2.Range["A6"].Value = "House";
 sheet2.Range["A6"].Interior.Color = Color.FromArgb(181, 128, 145);
 sheet2.Range["B6"].BindingPath = "House";
 sheet2.Range["C6"].Formula = "=B6/B9";
 sheet2.Range["A7"].Value = "Bonds";
 sheet2.Range["A7"].Interior.Color = Color.FromArgb(137, 116, 169);
 sheet2.Range["B7"].BindingPath = "Bonds";
 sheet2.Range["C7"].Formula = "=B7/B9";
 sheet2.Range["A8"].Value = "Car";
 sheet2.Range["A8"].Interior.Color = Color.FromArgb(114, 139, 173);
 sheet2.Range["B8"].BindingPath = "Car";
 sheet2.Range["C8"].Formula = "=B8/B9";
 sheet2.Range["A9"].Value = "Total";

 sheet2.Range["B9:C9"].Merge();
 sheet2.Range["B9:C9"].HorizontalAlignment = HorizontalAlignment.Center;
 sheet2.Range["B9:C9"].NumberFormat = "$#,##0_);($#,##0)";
 sheet2.Range["B9:C9"].Formula = "=SUM(B3:B8)";

 sheet2.Range["B3:B8"].NumberFormat = "$#,##0_);($#,##0)";
 sheet2.Range["C3:C8"].NumberFormat = "0.00%";
 sheet2.Range["C3:C8"].FormatConditions.AddDatabar();

 // Set data source
 sheet1.Range["A:B"].ColumnWidthInPixel = 300;
 sheet1.Range["1:2"].RowHeightInPixel = 200;
 sheet1.Range["A1"].Value = record1;
 sheet1.Range["B1"].Value = record2;
 sheet1.Range["A2"].Value = record3;
 sheet1.Range["B2"].Value = record4;

 // Step 3. Create a range template celltype
 var rangeTemplateCelltype = new RangeTemplateCellType(sheet2);

Documents for Excel, .NET Edition 65

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 // Apply cell type to "A1:B2"
 sheet1.Range["A1:B2"].CellType = rangeTemplateCelltype;

 //save to a pdf file
 workbook.Save("addrangetemplatecelltype.pdf");

}
class CustomObjectJsonSerializer : IJsonSerializer
{
 public object Deserialize(string json)
 {
 return Newtonsoft.Json.JsonConvert.DeserializeObject(json);
 }

 public string Serialize(object value)
 {
 return Newtonsoft.Json.JsonConvert.SerializeObject(value);
 }
}
class PersonalAssets
{
 public string Name;
 public int Savings;
 public int Shares;
 public int Stocks;
 public int House;
 public int Bonds;
 public int Car;
}

Limitation

Excel doesn't support Range Template cell type. Hence, it would be lost after saving to xlsx file.

Quote Prefix
GcExcel library provides the Quote Prefix feature just like Microsoft Excel. You can add a single quote or an apostrophe as
a prefix to handle the cell value as text. The quote prefix remains hidden and only the cell value is visible. The single quote
prefix can be seen in the formula bar when the user selects the cell.

Refer to the following example code to see how the quote prefix works in an Excel spreadsheet using GcExcel.

C#

workbook.Worksheets[0].Range["C4"].Value = "'00001234";
workbook.Worksheets[0].Range["C5"].Value = "'Dec-1";

workbook.Worksheets[0].Range["F4"].Value = "''006438098";

Documents for Excel, .NET Edition 66

Copyright © 2021 GrapeCity, Inc. All rights reserved.

workbook.Worksheets[0].Range["F5"].Value = "''Jan-4";

The below image shows the output of a prefixed quote. The quote is displayed in the formula bar whereas the cell hides it.

The below image shows the output of two prefixed quotes where both the quotes are displayed in the formula bar
whereas the cell retains only one.

Tags
With GcExcel, you can configure tags for worksheets which allow you to store private data in a cell, row, column, range
or spreadsheet. The tags can store any type of data and are not visible to the end user. Tags are retained while performing
the import or export operations from or to JSON.

Tags for worksheets can be configured using the Tag property of IWorksheet interface. Whereas for a cell or a range of
cells, the tags can be configured using the Tag property of IRange interface. If the tag values are different in a range of
cells, the tag value of the top-left cell of the range will be returned. The EntireColumn and EntireRow property of IRange
interface, along with the Tag property can be used to get or set tags for columns and rows respectively.

You can also configure custom tags by instantiating a class. A json serializer or deserializer should be provided to support
json I/O by implementing IJsonSerializer.

Using Code

Refer to the following code to use tags:

C#

public void Tags()
{

Documents for Excel, .NET Edition 67

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 //Add Tag for worksheet
 worksheet.Tag = "This is a Tag for sheet.";
 // Add Tag for Cell C1
 worksheet.Range["C1"].Tag = "This is a Tag for Cell C1";
 //Add Tag for Row 4
 worksheet.Range["A4"].EntireRow.Tag = "This is a Tag for Row 4";
 //Add Tag for Column F
 worksheet.Range["F5"].EntireColumn.Tag = "This is a Tag for Column F";
 //Add tag for Range A1:B2
 worksheet.Range["A1:B2"].Tag = "This is a Tag for A1:B2";

 // Exporting workbook to JSON stream
 var jsonstr = workbook.ToJson();

 // Initialize another workbook
 Workbook workbook2 = new Workbook();

 // Importing JSON stream in workbook
 workbook2.FromJson(jsonstr);

 // Get Tag of Range A1:B2
 object tag = workbook2.Worksheets[0].Range["A1:B2"].Tag;

 // Tags are preserved while exporting and importing json stream
 Console.WriteLine(" Tag for CellRange[A1:B2] is : " + tag);

}

Refer to the following code to use custom tags:

C#

class CustomTags
{
 public void CustomTag()
 {
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 Workbook.TagJsonSerializer = new NetJsonSerializer();

Documents for Excel, .NET Edition 68

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 // Set Tag of "A1" as custom type "Student"
 worksheet.Range["A1"].Tag = new Student("Robin", 7);

 // Exporting workbook to JSON stream
 string json = workbook.ToJson();

 // Initialize another workbook
 Workbook workbook2 = new Workbook();

 // Importing JSON stream in workbook
 workbook2.FromJson(json);

 // Get Tag as JObject
 object tag = workbook2.Worksheets[0].Range["A1"].Tag;

 // Convert JObject to "Student"
 Student student = (tag as Newtonsoft.Json.Linq.JObject).ToObject<Student>();

 // Tags are preserved while exporting and importing json stream
 Console.WriteLine(" Tag for CellRange[A1] is of class: " + student);
 Console.WriteLine(" Tag for CellRange[A1] is: " + tag);

 }
}

internal class Student
{
 public string name;
 public int age;

 public Student(string name, int age)
 {
 this.name = name;
 this.age = age;
 }
}
internal class NetJsonSerializer : IJsonSerializer
{
 public object Deserialize(string json)
 {
 return Newtonsoft.Json.JsonConvert.DeserializeObject(json) as
Newtonsoft.Json.Linq.JObject;
 }

 public string Serialize(object value)
 {
 return Newtonsoft.Json.JsonConvert.SerializeObject(value);

Documents for Excel, .NET Edition 69

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 }
}

Rich Text
GcExcel.NET provides support for applying rich text formatting in the cells of the worksheet. By default, when textual
information is entered in a cell, the alphabets are displayed without any formatting style. Rich text feature allows you to
apply multiple styles to the text by highlighting important characters or alphabets using different colors, font family, font
effects (bold, underline, double underline, strikethrough, subscript, superscript) and font size etc.

Let's say you have a worksheet wherein the cells contain some characters that need to be highlighted to a greater extent
in order to emphasize on important information like the name of an organization, company's flagship product, a number,
or any other sensitive data. In such a scenario, rich text feature comes in handy while setting multiple styles in a cell.

In the following example, cell A1 contains a string where rich text formatting has been applied. The word "Documents" is
formatted with a custom font size, underline style and blue color. Similarly, the text "GrapeCity" and "Excel" has been
formatted using multiple styles.

You can set the rich text in the cells of a worksheet by using any of the following ways -

Using the IRichText Interface.
Using the IRange.Characters().
Using the IRange.Characters() to Configure Font Across Several Runs.
Using the ITextRun.InsertAfter() and ITextRun.InsertBefore().

Using the IRichText Interface.

The Add method of the IRichText interface can be used to add specific ranges of text to the RichText collection of IText
runs.

Using Code

Refer to the following example code in order to set rich text in the cells of a worksheet using the IRichText interface.

C#

 // Setting column "A" width
 worksheet.Range["A1"].ColumnWidth = 70;

Documents for Excel, .NET Edition 70

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 // Using IRichText interface to add rich text in cell range A1

 // Fetch the IRichText object associated with the cell range
 IRichText richText = worksheet.Range["A1"].RichText;

 // Add string "GrapeCity " to IRichText object and apply formatting
 ITextRun run1 = richText.Add("GrapeCity ");
 run1.Font.Color = Color.Red;
 run1.Font.Bold = true;
 run1.Font.Size = 20;

 // Append string "Documents" to IRichText object and apply formatting
 ITextRun run2 = richText.Add("Documents");
 run2.Font.ThemeFont = ThemeFont.Major;
 run2.Font.ThemeColor = ThemeColor.Accent1;
 run2.Font.Size = 30;
 run2.Font.Underline = UnderlineType.Single;

 // Append string " for " to IRichText object
richText.Add(" for ");

 // Append string "Excel" to IRichText object and apply formatting
 ITextRun run3 = richText.Add("Excel");
 run3.Font.Name = "Arial Black";
 run3.Font.Color = Color.LightGreen;
 run3.Font.Size = 36;
 run3.Font.Italic = true;

Using the IRange.Characters()

The Characters() method of the IRange interface can be used to represent a range of characters within the text entered
in the cell. This method will be called only when the value of the cell is in the string format.

Using Code

Refer to the following example code in order to set rich text in the cells of a worksheet.

C#

// Setting column "A" width
worksheet.Range["A1"].ColumnWidth = 70;

// Use IRange.Characters() to add rich text

// Setting Cell Text
worksheet.Range["A1"].Value = "GrapeCity Documents for Excel";

// Extracting character ranges from cell text and applying different formatting rules to

Documents for Excel, .NET Edition 71

Copyright © 2021 GrapeCity, Inc. All rights reserved.

each range

// Formatting string "Grapecity"
ITextRun run1 = worksheet.Range["A1"].Characters(0, 9);
run1.Font.Color = Color.Red;
run1.Font.Bold = true;
run1.Font.Size = 20;

// Formatting string "Documents"
ITextRun run2 = worksheet.Range["A1"].Characters(10, 9);
run2.Font.ThemeFont = ThemeFont.Major;
run2.Font.ThemeColor = ThemeColor.Accent1;
run2.Font.Size = 30;
run2.Font.Underline = UnderlineType.Single;

// Formatting string "Excel"
ITextRun run3 = worksheet.Range["A1"].Characters(24, 5);
run3.Font.Name = "Arial Black";
run3.Font.Color = Color.LightGreen;
run3.Font.Size = 36;
run3.Font.Italic = true;

Using the IRange.Characters() to Configure Font Across Several Runs

You can also insert rich text in the cells of a worksheet via using the Characters() method of the IRange interface in order
to configure the font across several runs and then consolidate them into a single entity.

Using Code

Refer to the following example code in order to set rich text in the cells of a worksheet.

C#

// Setting column "A" width
worksheet.Range["A1"].ColumnWidth = 75;

// Use IRange.Characters() to configure font across several runs

// Fetch the IRichText object associated with the cell range
IRichText richText = worksheet.Range["A1"].RichText;

// Add string "GrapeCity " to IRichText object and apply formatting
ITextRun run1 = richText.Add("GrapeCity ");
run1.Font.Color = Color.Red;
run1.Font.Bold = true;
run1.Font.Size = 20;

Documents for Excel, .NET Edition 72

Copyright © 2021 GrapeCity, Inc. All rights reserved.

// Append string "Documents" to IRichText object and apply formatting
ITextRun run2 = richText.Add("Documents");
run2.Font.ThemeFont = ThemeFont.Major;
run2.Font.ThemeColor = ThemeColor.Accent1;
run2.Font.Size = 30;
run2.Font.Underline = UnderlineType.Single;

// Append string " for " to IRichText object
richText.Add(" for ");

// Append string "Excel" to IRichText object and apply formatting
ITextRun run3 = richText.Add("Excel");
run3.Font.Name = "Arial Black";
run3.Font.Color = Color.LightGreen;
run3.Font.Color = Color.LightGreen;
run3.Font.Size = 36;
run3.Font.Italic = true;

// Create composite run
// Extract character range composed of "City" word from run1 and " for" word and apply
formatting
ITextRun compositeRun = worksheet.Range["A1"].Characters(5, 18);
compositeRun.Font.Bold = true;
compositeRun.Font.Italic = true;
compositeRun.Font.ThemeColor = ThemeColor.Accent1;

Using the ITextRun.InsertAfter() and ITextRun.InsertBefore

The ITextRun interface provides the properties and methods for adding and customizing the rich text entered in the cells
of the worksheet. The InsertAfter() and InsertBefore() methods of the ITextRun interface can be used to insert rich text
after and before a range of characters respectively. Also, you can use the Delete method of the ITextRun interface in
order to delete the inserted rich text in the cells.

Using Code

Refer to the following example code in order to set rich text in the cells of a worksheet.

C#

// Setting column "A" width
worksheet.Range["A1"].ColumnWidth = 70;

// Using ITextRun.InsertAfter() and InsertBefore() to add rich text

// Fetch the IRichText object associated with the cell range
IRichText richText = worksheet.Range["A1"].RichText;

Documents for Excel, .NET Edition 73

Copyright © 2021 GrapeCity, Inc. All rights reserved.

// Add string " for " to IRichText object
ITextRun run1 = richText.Add(" for ");

// Use InsertBefore() to add string "Documents" to run1 and apply formatting
ITextRun run2 = run1.InsertBefore("Documents");
run2.Font.ThemeFont = ThemeFont.Major;
run2.Font.ThemeColor = ThemeColor.Accent1;
run2.Font.Size = 30;
run2.Font.Underline = UnderlineType.Single;

// Use InsertBefore() to add string "GrapeCity " to run2 and apply formatting
ITextRun run3 = run2.InsertBefore("GrapeCity ");
run3.Font.Color = Color.Red;
run3.Font.Bold = true;
run3.Font.Size = 20;

// Use InsertAfter() to add string "Excel" to run1 and apply formatting
ITextRun run4 = run1.InsertAfter("Excel");
run4.Font.Name = "Arial Black";
run4.Font.Color = Color.LightGreen;
run4.Font.Size = 36;
run4.Font.Italic = true;

Workbook
A workbook is a spreadsheet document that comprises of one or more worksheets that are stored within the Worksheets
collection.

GcExcel .NET provides all the necessary properties and methods required to create a workbook, perform complex
operations on the data residing in the spreadsheets and make use of several workbook events that are triggered when
called explicitly by the user through code

Managing a workbook involves the following tasks:

Create Workbook
Open and Save Workbook
Protect Workbook
Cut or Copy Across Sheets
Enable or Disable Calculation Engine
Workbook Views

Create Workbook
In GcExcel, you can create a new instance of a workbook by using the constructor of Workbook class.

A workbook may contain one or more worksheets that are kept in the Worksheets collection. By default, a workbook
contains one empty worksheet with the default name Sheet1, which is created as soon as the user generates a new
instance of the Workbook class.

Documents for Excel, .NET Edition 74

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Refer to the following example code to see how you can create a workbook using GcExcel.

C#

//Initialize the WorkBook
Workbook workbook = new Workbook();

In order to add more worksheets to your workbook, refer to Work with Worksheets in this documentation.

Open and Save Workbook
Once you create a workbook, you can open the workbook to make modifications and save the changes back to the
workbook.

This topic includes the following tasks:

Open a workbook
Save a workbook

Open a workbook

You can open an existing workbook by calling the Open method of the Workbook class.

While opening a workbook, you can also choose from several import options listed in the below table:

 Open Options Description

Import Flags NoFlag=0

Data=1

Formulas=2

Default

Read only the data from the worksheet

Read only the data, formula, defined names and table from
the worksheet. Table is included for table formula.

DoNotRecalculateAfterOpened Do not recalculate when getting formula value after loading
the file. Default is false

Refer to the following example code to open a workbook.

C#

// Opening a workbook
 workbook.Open(@"Source.xlsx", OpenFileFormat.Xlsx);

//Opening a workbook with Import options

//Import only data from .xlsx document.

XlsxOpenOptions options = new XlsxOpenOptions();
options.ImportFlags = ImportFlags.Data;
workbook.Open(@"DemoOpen.xlsx", options);

Documents for Excel, .NET Edition 75

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//Don't recalculate after opened.
XlsxOpenOptions options1 = new XlsxOpenOptions();
options1.DoNotRecalculateAfterOpened = true;
workbook.Open(@"DemoOpen.xlsx", options1);

Note: While opening the workbook, you can check whether it is password protected or not by using the
IsEncryptedFile method of the Workbook class. If your workbook is password protected, you would need to provide
a password everytime you open it.

Apart from .xlsx files, you can also open the below file formats by using the overloads of Open method in Workbook class:

.xlsm

.csv

.json

.ssjson

However, an exception is thrown when unsupported file formats are opened. While opening a JSON file, the
DeserializationOptions are supported as well.

Refer to the following example code to open a JSON file with and without options.

C#

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

// Import JSON without options
workbook.Open("file.json");

// Import JSON with options
var options = new DeserializationOptions { IgnoreStyle = true };
workbook.Open("file.json", options);

Save a workbook

You can save the changes made in the existing workbook by calling the Save method of the Workbook class.

Refer to the following example code to save your workbook.

C#

// Save the Excel file
workbook.Save(@"createWorkbook.xlsx", SaveFileFormat.Xlsx);

Protect Workbook
GcExcel allows you to protect a workbook in case it contains any critical and confidential information that cannot be
shared with others. Additionally, you can also protect it from modification so that other users can't perform certain
operations on the workbook.

Documents for Excel, .NET Edition 76

Copyright © 2021 GrapeCity, Inc. All rights reserved.

To protect or unprotect a workbook, you can perform the following tasks:

Protect Workbook Using Password
Protect Workbook from Modification
Unprotect Workbook from Modification

Protect Workbook using Password

GcExcel enables users to protect a workbook by encrypting it with a password. This is important when you have a
business-critical workbook containing sensitive data that cannot be shared with everyone. You can secure a workbook
using the Password property of XlsxSaveOptions class.

Refer to the following example code to make your workbook password protected.

C#

// Save the Excel file and protect it using password.
XlsxSaveOptions options = new XlsxSaveOptions();
options.Password = "123456";
workbook.Save(@"ProtectWorkbook.xlsx", options);

Protect Workbook from Modification

GcExcel allows you to protect a workbook from modification. Optionally, a password can be set to achieve the same.

The Workbook class provides two overloaded Protect methods, one of which takes password as a parameter. Both the
methods have two optional parameters, structure and windows, which provide different types of modification protection
when set.

If structure is true, worksheets cannot be added, moved, deleted, hidden or renamed, and hidden worksheets
cannot be viewed. Its default value is true.
If windows is true, the workbook window cannot be moved, resized, closed or hidden or unhidden. This option is
supported only in Excel 2007, Excel 2010, Excel for Mac 2011 and Excel 2016 for Mac. Its default value is false.

Refer to the following example code to protect the workbook from modification using password.

C#

// Initialize workbook
Workbook workbook = new Workbook();

//Protects the workbook with password so that other users cannot view hidden worksheets,
add, move, delete, hide, or rename worksheets.
workbook.Protect("Ygs_87@ytr");
// Save workbook to xlsx
workbook.Save(@"ProtectWorkbookWithPassword.xlsx", SaveFileFormat.Xlsx);

Refer to the following example code to protect the workbook from modification without using password.

C#

// Initialize workbook
Workbook workbook = new Workbook();

Documents for Excel, .NET Edition 77

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//Protects the workbook so that other users cannot view hidden worksheets, add, move,
delete, hide, or rename worksheets.
workbook.Protect();
// Saving workbook to xlsx
workbook.Save(@"ProtectWorkbook.xlsx", SaveFileFormat.Xlsx);

Unprotect Workbook from Modification

A protected workbook can be unprotected to make modifications using the Unprotect method of the Workbook class,
which removes the protection from a workbook.

To unprotect a password protected workbook, the correct password needs to be passed as a parameter to the Unprotect
method. In case, the password is omitted or an incorrect password is passed, an exception message "Invalid Password" is
thrown.

Refer to the following example code to unprotect a password protected workbook.

C#

// Initialize workbook
Workbook workbook = new Workbook();

workbook.Protect("Ygs_87@ytr");
//Removes the above protection from the workbook
workbook.Unprotect("Ygs_87@ytr");
// Save workbook to xlsx
workbook.Save(@"UnprotectWorkbookWithPassword.xlsx", SaveFileFormat.Xlsx);

If a workbook is not protected with a password, the password argument is ignored by the Unprotect method.

Refer to the following example code to unprotect the protected workbook.

C#

// Initialize workbook
Workbook workbook = new Workbook();

workbook.Protect();
//Removes the above protection from the workbook.
workbook.Unprotect();
// Saving workbook to xlsx
workbook.Save(@"UnprotectWorkbook.xlsx", SaveFileFormat.Xlsx);

Cut or Copy Across Sheets
In GcExcel .NET, it is possible to cut or copy data across a range of cells or several worksheets without the need to copy
and paste the information into each of the cells or sheets individually.

For instance, let's say you want the same title text to be put into different worksheets within a workbook. To accomplish
this, if you type the text in one worksheet and copy,paste it into every other worksheet, the process can turn out to be

Documents for Excel, .NET Edition 78

Copyright © 2021 GrapeCity, Inc. All rights reserved.

both cumbersome and time-consuming.

A quick way of doing this would be to cut or copy information across cells or sheets using:

The Copy method to copy rows, columns, or a range of cells and paste them to destination.
The Cut method to cut rows, columns, or a range of cells and paste them to destination.

Copy across sheets

Refer to the following example code to perform copy operation in a workbook.

C#

// Copy across sheets
 worksheet.Range["A5"].Copy(worksheet2.Range["A1"]);

Cut across sheets

Refer to the following example code to perform cut operation in a workbook.

C#

 // Cut across sheets
worksheet.Range["A2"].Cut(worksheet2.Range["A3"]);

Enable or Disable Calculation Engine
GcExcel offers exceptional computing features with its built-in calculation engine that is capable of performing even the
most complex operations on the data in the spreadsheets with complete accuracy and within fraction of seconds. This
calculation engine can be integrated with spreadsheets to achieve the desired results. Some of the advantages of using a
calculation engine are as follows:

1. Bulk Data analysis: Involves less programming to handle complex spreadsheet calculations and provides the
ability to fetch data from cells within the spreadsheets, perform calculations on it and display results for
unparalleled data analysis of tons of data.

2. Ease of use: Easy-to-configure calculation engine.
3. Saves Time and Efforts: Pre-defined functions and methods to reduce implementation time and efforts.

Enable calculation engine

Refer to the following example code to enable calculation engine.

C#

//enable calc engine.
worksheet2.Range["A1"].Value = 1;
worksheet2.Range["A2"].Formula = "=A1";
workbook.EnableCalculation = true;

//calc formula when get value. A2's value is 1d.
var value1 = worksheet2.Range["A2"].Value;

Documents for Excel, .NET Edition 79

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Disable calculation engine

Refer to the following example code to disable calculation engine.

C#

//disable calc engine.
workbook.EnableCalculation = false;
worksheet.Range["A1"].Value = 1;
worksheet.Range["A2"].Formula = "=A1";

//A2's value is 0.
var value = worksheet.Range["A2"].Value;

Workbook Views
GcExcel allows users to personalize the display of the workbook. You can use the BookView property of the IWorkbook
interface to set the view of the workbook as per your preferences.

The following properties of the IWorkbookView interface allows users to further customize various display settings in the
workbook.

1. DisplayHorizontalScrollBar - This property gets and sets the display of the horizontal scrollbar.
2. DisplayVerticalScrollBar- This property gets and sets the display of the vertical scrollbar.
3. DisplayWorkbookTabs- This property gets and sets if the workbook tabs are displayed.
4. TabRatio - This property gets and sets the ratio of the width of the tab area (of the workbook) to the width of the

horizontal scroll bar (of the worksheet). The value of TabRatio can be any number between 0 and 1. By default, if
the TabRatio is not set, the value is 0.6.

Refer to the following code snippet to set workbook view and customize other display settings.

C#

//Set workbook view

IWorkbook workbook = new Workbook();
var bookView = workbook.BookView;
bookView.DisplayHorizontalScrollBar = true;
bookView.DisplayVerticalScrollBar = true;
bookView.DisplayWorkbookTabs = true;
bookView.TabRatio = 0.8;

Comments
GcExcel .NET enables you to annotate a worksheet by writing comments on cells in order to specify additional information
about the data it contains.

For instance, let us assume you want to enter only the numeric information in an individual cell of a worksheet. To
accomplish this, instead of populating a small cell with large notes, it is more ideal to use a short comment (something

Documents for Excel, .NET Edition 80

Copyright © 2021 GrapeCity, Inc. All rights reserved.

like "Please enter only numeric characters in this cell") in order to provide additional context for the data represented in
that cell.

The cells annotated with comments will display a small red indicator (at the corner of the cell) which appear when your
mouse pointer is placed on that particular cell. The text in the comments can be edited, copied and formatted. Also, the
comments can be moved, resized or deleted, can be made hidden or visible and their indicators can also be customized as
per your preferences.

The following tasks can be performed while applying comments in cells of a spreadsheet:

Add comment to a cell
Set comment layout
Show/Hide comment
Author comments
Set rich text for comment
Delete comment

Add Comment to a Cell

In GcExcel .NET, a cell comment instance is represented by the IComment interface. You can insert comment to a cell or
a range of cells using the AddComment method of the IRange interface. You can also set the text of the comment using
the Text property of the IComment interface.

Refer to the following example code to add comment to a cell.

C#

// Create a comment for the range ["C3"]
IComment commentC3 = worksheet.Range["C3"].AddComment("Range C3's comment.");

//Change the text of the comment.
commentC3.Text = "Range C3's new comment.";

Documents for Excel, .NET Edition 81

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Set Comment Layout

You can configure the layout of the comment added to an individual cell or a range of cells using Shape property of
the IComment interface.

Refer to the following example code to set comment layout.

C#

//Configure comment layout

commentC3.Shape.Line.Color.RGB = Color.Green;
commentC3.Shape.Line.Weight = 7;

commentC3.Shape.Fill.Color.RGB = Color.Gray;
commentC3.Shape.Width = 100;
commentC3.Shape.Height = 200;
commentC3.Shape.TextFrame.TextRange.Font.Bold = true;
commentC3.Visible = true;

Show/Hide Comment

You can choose to keep comments hidden or visible by using the Visible property of the IComment interface.

Refer to the following example code to show/hide comment added to a cell.

C#

//Show Comment
worksheet.Range["C3"].Comment.Visible = true;

//Hide Comment
worksheet.Range["C3"].Comment.Visible = false;

Author Comments

You can represent the author of the comment by using the Author property of the IComment interface. Also, you can
use this property to change the author of an existing comment.

Refer to the following example code to set comment author for a cell.

C#

// Set comment author
workbook.Author = "joneshan";
worksheet.Range["H6"].AddComment("H6's comment.");
//H6's comment author is "joneshan".
var authorH6 = worksheet.Range["H6"].Comment.Author;

Set Rich Text for Comment

You can set the rich text for the comment using the properties and methods of the ITextFrame Interface that control the

Documents for Excel, .NET Edition 82

Copyright © 2021 GrapeCity, Inc. All rights reserved.

text style.

Refer to the following example code to set rich text for the comment.

C#

IComment commentC3 = worksheet.Range["C3"].AddComment("Cell ");

// Set paragraph's font style
commentC3.Shape.TextFrame.TextRange.Paragraphs[0].Font.Bold = true;

// Add comment in paragraph
commentC3.Shape.TextFrame.TextRange.Paragraphs[0].Runs.Add(" C3");
commentC3.Shape.TextFrame.TextRange.Paragraphs[0].Runs.Add(" Comment");
commentC3.Shape.TextFrame.TextRange.Paragraphs[0].Runs.Add(" Added");

// Set the style of the second comment
commentC3.Shape.TextFrame.TextRange.Paragraphs[0].Runs[2].Font.Italic = true;
commentC3.Shape.TextFrame.TextRange.Paragraphs[0].Runs[2].Font.Bold = true;

// Show comment
commentC3.Visible = true;

Delete Comment

You can delete the comment added to a cell or to a cell range using the Delete method of the IComment interface and
the IRange interface respectively.

Refer to the following example code to delete comment from a cell.

C#

// Delete Comment instance
commentC3.Delete();

Hyperlinks
GcExcel .NET allows users to create references to the data in the form of hypertext links that point towards another
document or a section within the same document. A worksheet or a range can have multiple hyperlinks. Hyperlinks can be
created and inserted in cells to allow users to quickly access related information present in another file or on a webpage
by clicking on the link.

Hyperlinks are stored in a specific worksheet or in a range by accessing the Hyperlinks collection of the IWorksheet
interface and the IRange interface respectively.

You can perform the following tasks to manage hyperlinks.

Add Hyperlinks
Configure Hyperlinks
Delete Hyperlinks

Documents for Excel, .NET Edition 83

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Add hyperlinks

Hyperlinks can be created and inserted through linking to an external file, linking to a webpage, linking to an email
address and also linking to a range within the worksheet. You can add hyperlinks for a range of cells in a worksheet using
the Add method of the IHyperLinks interface.

Refer to the following example code to insert hyperlinks to an external file, to a webpage, to a range within the worksheet
and to an email address.

C#

// Add a hyperlink link to external file
worksheet.Range["A1:B2"].Hyperlinks.Add(worksheet.Range["A1"],

@"C:\Documents\GcExcel\GrapeCityDocumentsExcel\Project\Hyperlink\SampleFile.xlsx",
 null,
 "link to SampleFile.xlsx file.",
 "SampleFile.xlsx");

C#

// Add a hyperlink link to web page
worksheet.Range["A1:B2"].Hyperlinks.Add(worksheet.Range["A1"],
 "http://www.grapecity.com/",
 null,
 "open Grapecity web site.",
 "Grapecity");

C#

 //Add a hyperlink link to a range in this document.
worksheet.Range["A1:B2"].Hyperlinks.Add(worksheet.Range["A1"],
 null,
 "Sheet1!C3:E4",
 "Go To sheet1 C3:E4");

C#

//Add a hyperlink link to email address.
worksheet.Range["A1:B2"].Hyperlinks.Add(worksheet.Range["A1"],
 "mailto:abc.xyz@grapecity.com",
 null,
 "Send an email to ABC",
 "Send To ABC");

Configure Hyperlinks

Hyperlinks can be configured using the following properties of the IHyperlink interface.

1. You can use the Address and SubAddress properties of the IHyperlink interface to configure the hyperlink
references. The table shown below illustrates both of these properties with examples:

Link To Address SubAddress

Documents for Excel, .NET Edition 84

Copyright © 2021 GrapeCity, Inc. All rights reserved.

External File Example: "C:\Users\Desktop\test.xlsx" null

Webpage Example: "http://www.grapecity.com/" null

A range in this document Example: null "Sheet1!C3:E4"

Email Address Example: "mailto: abc.xyz@grapecity.com" null

2. You can use the EmailSubject property to set the text of hyperlink's email subject line.
3. You can use the ScreenTip property to set the tip text for the specified hyperlink.
4. You can use the TextToDisplay property to set the text to be displayed for the specified hyperlink.

Delete Hyperlinks

The hyperlinks inserted in the cells can be removed from the hyperlinks collection in a specific worksheet or in a specific
range using the Delete method.

Refer to the following example code to delete hyperlinks.

C#

//Delete hyperlinks.
worksheet.Range["A1:B2"].Hyperlinks.Add(worksheet.Range["A1:A2"],
 null,
 "Sheet1!C3:E4",
 "Go To sheet1 C3:E4");

worksheet.Range["H5"].Hyperlinks.Add(worksheet.Range["A1"],
"http://www.grapecity.com/");
worksheet.Range["J6"].Hyperlinks.Add(worksheet.Range["A1"],
"http://www.grapecity.com/");

//delete hyperlinks in range A1:A2.
worksheet.Range["A1:A2"].Hyperlinks.Delete();

//delete all hyperlinks in this worksheet.
worksheet.Hyperlinks.Delete();

Sort
GcExcel provides the Sort method to perform data sorting based on a range of cells, range by value, color or icon in a
worksheet. The Apply method is used to apply the selected sort state and display the results.

Note: Sorting can be performed on merged cells as well, provided merged cells have the same size.

Following are the types of sorting available in GcExcel.

Sort by value

Sort by value performs sorting to arrange the data in order. SortOrientation property is used to specify the orientation

Documents for Excel, .NET Edition 85

Copyright © 2021 GrapeCity, Inc. All rights reserved.

category for sorting, that is, columns or rows.

Refer to the following code example to sort by value.

C#

//Sort by value, use Sort() method.
worksheet.Range["A1:B4"].Sort(worksheet.Range["A1:A4"], orientation:
SortOrientation.Columns);

Sort by value for multiple columns

Sort by value for multiple columns performs sorting on multiple columns using a single line of code. ValueSortField
method is used to define multiple sort field instances in one statement. SortOrder property is used to specify the
orientation of columns in either ascending order or descending order.

Refer to the following code example to sort by value for multiple columns.

C#

//Sort by value, multi column sort.use Sort() method.
worksheet.Range["A1:B4"].Sort(SortOrientation.Columns, false, new ValueSortField[] { new
ValueSortField(worksheet.Range["A1:A4"],SortOrder.Descending), new
ValueSortField(worksheet.Range["B1:B4"], SortOrder.Ascending)});

Custom sort

Sorting is a common task, but not all data conforms to the common ascending and descending rule. For example, months
cannot be sorted in a meaningful way when sorted alphabetically. In this case, GcExcel offers a custom sort. For custom
sorting, string of values are defined in ValueSortField constructor.

Refer to the following code example to implement custom sorting.

C#

//give a custom sort values string.
var sortkey = new ValueSortField(worksheet.Range["A1:A2"], "1,2,3");
worksheet.Range["A2:A6"].Sort(SortOrientation.Columns, false, sortkey);

Sort by interior

Sort by interior performs sorting on the basis of interior color, pattern, pattern color, gradient color and gradient angle.
However, interior sort cannot be performed on the basis of cell color.

Refer to the following code example to sort by interior.

C#

// Assigning pattern to the range
 worksheet.Range["A3"].Interior.Pattern = Pattern.LinearGradient;
 worksheet.Range["A4"].Interior.Pattern = Pattern.LinearGradient;

Documents for Excel, .NET Edition 86

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 worksheet.Range["A5"].Interior.Pattern = Pattern.LinearGradient;
 worksheet.Range["A6"].Interior.Pattern = Pattern.LinearGradient;
// Defining values to the range
 worksheet.Range["A3"].Value = 1;
 worksheet.Range["A4"].Value = 2;
 worksheet.Range["A5"].Value = 3;
 worksheet.Range["A6"].Value = 4;
// Assigning gradient to the range
(worksheet.Range["A3"].Interior.Gradient as ILinearGradient).ColorStops[0].Color =
Color.FromArgb(255, 0, 0);
(worksheet.Range["A3"].Interior.Gradient as ILinearGradient).ColorStops[1].Color =
Color.FromArgb(146, 208, 80);
(worksheet.Range["A3"].Interior.Gradient as ILinearGradient).Degree = 90;

(worksheet.Range["A4"].Interior.Gradient as ILinearGradient).ColorStops[0].Color =
Color.FromArgb(255, 0, 255);
(worksheet.Range["A4"].Interior.Gradient as ILinearGradient).ColorStops[1].Color =
Color.FromArgb(146, 208, 90);
(worksheet.Range["A4"].Interior.Gradient as ILinearGradient).Degree = 90;

(worksheet.Range["A5"].Interior.Gradient as ILinearGradient).ColorStops[0].Color =
Color.FromArgb(255, 0, 255);
(worksheet.Range["A5"].Interior.Gradient as ILinearGradient).ColorStops[1].Color =
Color.FromArgb(146, 208, 180);
(worksheet.Range["A5"].Interior.Gradient as ILinearGradient).Degree = 90;

(worksheet.Range["A6"].Interior.Gradient as ILinearGradient).ColorStops[0].Color =
Color.FromArgb(255, 0, 255);
(worksheet.Range["A6"].Interior.Gradient as ILinearGradient).ColorStops[1].Color =
Color.FromArgb(146, 208, 90);
(worksheet.Range["A6"].Interior.Gradient as ILinearGradient).Degree = 90;
//
 worksheet.Sort.SortFields.Add(new CellColorSortField(worksheet.Range["A1:A2"],
worksheet.Range["A6"].DisplayFormat.Interior, SortOrder.Ascending));
 worksheet.Sort.Range = worksheet.Range["A3:A6"];
 worksheet.Sort.Orientation = SortOrientation.Columns;
 worksheet.Sort.Apply();

Sort by font color

Sort by font color performs sorting by cell's display format font color. However, sorting is not performed on the basis of
cell color.

Refer to the following code example to sort by font color.

C#

// Assigning Value to the range
 worksheet.Range["A1"].Value = 2;

Documents for Excel, .NET Edition 87

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 worksheet.Range["A2"].Value = 1;
 worksheet.Range["A3"].Value = 1;
 worksheet.Range["A4"].Value = 3;

 worksheet.Range["B1"].Value = 2;
 worksheet.Range["B2"].Value = 1;
 worksheet.Range["B3"].Value = 1;
 worksheet.Range["B4"].Value = 3;
// Assigning Color to the range
 worksheet.Range["B1"].Font.Color = Color.FromArgb(0, 128, 0);
 worksheet.Range["B2"].Font.Color = Color.FromArgb(128, 0, 0);
 worksheet.Range["B3"].Font.Color = Color.FromArgb(0, 0, 128);
 worksheet.Range["B4"].Font.Color = Color.FromArgb(128, 128, 0);
// Defining Sort by Color
 worksheet.Sort.SortFields.Add(new FontColorSortField(worksheet.Range["B1:B4"],
worksheet.Range["B1"].DisplayFormat.Font.Color, SortOrder.Descending));
 worksheet.Sort.Range = worksheet.Range["A1:B4"];
 worksheet.Sort.Orientation = SortOrientation.Columns;
 worksheet.Sort.Apply();

Sort by Icon

Sort by icon performs sorting on the basis of cell's conditional format icons.

Refer to the following code example to sort by icon.

C#

// Assigning Value to the range
 worksheet.Range["A1"].Value = 2;
 worksheet.Range["A2"].Value = 1;
 worksheet.Range["A3"].Value = 1;
 worksheet.Range["A4"].Value = 3;

 worksheet.Range["B1"].Value = 2;
 worksheet.Range["B2"].Value = 1;
 worksheet.Range["B3"].Value = 1;
 worksheet.Range["B4"].Value = 3;
// Defining Sort by Icon
IIconSetCondition iconset =
worksheet.Range["B1:B4"].FormatConditions.AddIconSetCondition();
iconset.IconSet = workbook.IconSets[IconSetType.Icon3TrafficLights1];

 worksheet.Sort.SortFields.Add(new IconSortField(worksheet.Range["B1:B4"],
workbook.IconSets[IconSetType.Icon3TrafficLights1][0], SortOrder.Descending));
 worksheet.Sort.Range = worksheet.Range["A1:B4"];
 worksheet.Sort.Orientation = SortOrientation.Columns;
 worksheet.Sort.Apply();

Documents for Excel, .NET Edition 88

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Filter
Worksheets with bulk data can be difficult to manage. In such a scenario, applying filters can be a useful feature to view
only the required information while hiding rest of the data. Filters are used to display only the relevant records that match
to a certain criteria in a particular column.

In GcExcel, you can apply filters to a selected range of data. For example, you can apply date type filter from C4 to C7
range. To filter data in a range of cells or a table, you need to set the auto filter mode for the worksheet to boolean true
or false using AutoFilterMode property of the IWorksheet interface.

There are several types of range filters responsible for executing distinct filter operations in a worksheet.

Apply number filters
Apply multi select filters
Apply text filters
Apply date filters
Apply dynamic date filters
Apply filters by cell color
Apply filters by no fill
Apply filters by icon
Apply filters by no icon

Apply number filters

Refer to the following example code to see how you can apply number filters to display data that meets the specified
criteria applied on a column containing numeric cell values.

C#

// Apply number filter
worksheet.Range["D3:I6"].AutoFilter(0, "<>2");

Apply multi select filters

Refer to the following example code to see how multi select filters can be applied to quickly filter data based on cell
values with multiple selections.

C#

//filter condition is "multi select".
worksheet.Range["A1:E5"].AutoFilter(0, new object[] { "$2", "$4" },
AutoFilterOperator.Values);

Apply text filters

Refer to the following example code to see how text filters are applied to display rows with cell values that either match to
the specified text or regular expression value in the column on which the filter is applied.

C#

//begin with "a".
worksheet.Range["D3:I9"].AutoFilter(1, "a*");

Documents for Excel, .NET Edition 89

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Apply date filters

Refer to the following example code to see how date filters can be applied to a range to display only those results that are
falling within the specified dates.

Apply date filters

//Apply filter using Date criteria
var criteria1 = new DateTime(2008, 1, 1).ToString();
var criteria2 = new DateTime(2008, 8, 1).ToString();
worksheet.Range["D20:F29"].AutoFilter(2, ">=" + criteria1, AutoFilterOperator.And, "<="
+ criteria2);

Apply dynamic date filters

Refer to the following example code to see how dynamic date filters can be applied to display results that match the
specified date criteria taking into account the current system date that automatically gets updated everyday.

C#

//filter in yersterday.
worksheet.Range["D7:F18"].AutoFilter(2, DynamicFilterType.Yesterday,
AutoFilterOperator.Dynamic);

Apply filters by cell colors

Refer to the following example code to see how you can apply filters by cell colors on a column to display results
containing cells with distinct fill shades.

C#

worksheet.Range["A1:A6"].AutoFilter(0, Color.FromArgb(255, 255, 0),
AutoFilterOperator.CellColor);

Apply filters by no fill

Refer to the following example code to see how you can apply filters by no fill on a column to display results containing
cells with no fill color.

C#

worksheet.Range["A1:A6"].AutoFilter(0, null, AutoFilterOperator.NoFill);

Apply filters by icon

Refer to the following example code to see how you can apply filters by icon to display results that contain a specific icon
in the cells.

C#

worksheet.Range["A1:A10"].AutoFilter(0, workbook.IconSets[IconSetType.Icon5ArrowsGray]

Documents for Excel, .NET Edition 90

Copyright © 2021 GrapeCity, Inc. All rights reserved.

[0], AutoFilterOperator.Icon);

Apply filters by no icon

Refer to the following example code to see how you can apply filters by no icon to display results where cells do not
possess an icon.

C#

worksheet.Range["A1:A10"].AutoFilter(0, null, AutoFilterOperator.NoIcon);

Group
GcExcel .NET provides you with the ability to summarize large amounts of information in groups so that complex
spreadsheets are easier to navigate. The data in rows or columns can be grouped to organize information and create
custom views in a spreadsheet.

Each group in GcExcel .NET is distinguished with a group header row with collapse and expand icons next to it that can be
used for displaying or hiding information as and when required. You can set the Show Detail property of the IRange
Interface to boolean true to expand a group to display rows and columns that have been hidden and false to collapse the
expanded rows or columns.

Applying grouping in a spreadsheet involves the following tasks:

Create Row or Column Group
Remove a Group
Summary Row
Outline Subtotals
Outline Column

Note : When grouping is applied, rows of data are automatically sorted in ascending order against the grouped
columns.

Create Row or Column Group
You can apply grouping on rows and columns of a spreadsheet.

Apply row grouping
Apply column grouping
Set outline level for rows and columns

Apply row grouping

You can apply row grouping by using the Group method of the IRange interface and specifying the rows you want to
apply grouping on.

Refer to the following example code to apply row grouping in a worksheet.

C#

//1:20 rows' outline level will be 2.

Documents for Excel, .NET Edition 91

Copyright © 2021 GrapeCity, Inc. All rights reserved.

worksheet.Range["1:20"].Group();

Apply column grouping

You can apply column grouping by using the Group method of the IRange interface and specifying the columns you want
to apply grouping on.

Refer to the following example code to apply column grouping in a worksheet.

C#

//A:I columns' outline level will be 2.
worksheet.Range["A:I"].Group();

Set outline level for rows and columns

When the data is grouped for the first time, it displays only the rows arranged into the first level group on the basis of the
values of the cells in that particular column. After the first-level grouping, when the view is grouped by any column other
than the one used previously, the rows will be arranged in the second level group, third level group and so on.

In case you want to set the specific outline level for grouping of rows or columns, you can use the OutlineLevel
property of the IRange interface. You can also choose to display specified levels of row or column groups using
the ShowLevels method of the IOutline interface.

Refer to the following example code to set the Outline level for rows and columns.

C#

//1:10 rows' outline level will be 4.
worksheet.Range["1:10"].Group();
worksheet.Range["1:10"].OutlineLevel = 4;

//A:E columns' outline level will be 4.
worksheet.Range["A:E"].Group();
worksheet.Range["A:E"].OutlineLevel = 4;

You can use SummaryColumn property or SummaryRow property of the IOutline interface to set whether summary
column is in left or right of column groups or summary row is above or below the row groups, respectively.

Remove a Group
You can remove a group by implementing the following tasks in your worksheet.

Ungroup rows and columns
Clear Outline
Collapse a Group

Ungroup rows and columns

The grouped rows or columns can be ungrouped if you no longer want the information to be organized in clusters. You

Documents for Excel, .NET Edition 92

Copyright © 2021 GrapeCity, Inc. All rights reserved.

can increment or decrement the outline level for the specified rows or columns using the Group method and Ungroup
method of the IRange interface respectively.

Refer to the following example code to ungroup row and column in a worksheet.

C#

// Row Ungrouping
//1:5 rows' outline level will be 1.
worksheet.Range["1:5"].Ungroup();

// Column Ungrouping
//A:I columns outline level will be 2.
worksheet.Range["A:I"].Group();
//A:D columns outline level will be 1.
worksheet.Range["A:D"].Ungroup();

Clear outline

You can clear the outline level of the specified rows or columns using the ClearOutline method of the IRange interface.

Refer to the following example code to clear outline in a worksheet.

C#

//1:20 rows' outline level will be 2.
worksheet.Range["1:20"].Group();
//1:10 rows' outline level will be 3.
worksheet.Range["1:10"].Group();

//ClearOutline
//12:20 rows' outline level will be 1.
worksheet.Range["12:20"].ClearOutline();

Collapse a group

You can collapse a group by setting the ShowDetail property of the IRange interface to boolean false.

Refer to the following example code to collapse a group in a worksheet.

C#

//1:20 rows' outline level will be 2.
worksheet.Range["1:20"].Group();
//1:10 rows' outline level will be 3.
worksheet.Range["1:10"].Group();
//collapse
//1:10 rows will be collapsed.
worksheet.Range["11:11"].ShowDetail = false;

Documents for Excel, .NET Edition 93

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Summary Row
When grouping is performed in a spreadsheet, a summary row is automatically created corresponding to each group.
Summary rows are group header rows that display the group name with the information about the group that is being
created.

While working with GcExcel .NET, you modify and customize the summary row as per the requirement using
the SummaryRow property of the IOutline interface.

Refer to the following example code to set summary row.

C#

//summary
worksheet.Outline.SummaryRow = SummaryRow.Above;

//Summary row will be row 4.
worksheet.Range["5:20"].Group();
//Summary row will be row 14.
worksheet.Range["15:20"].Group();

Outline Subtotals
You can derive meaningful and summarized insights from outline data by applying the subtotals to the grouped values.

In GcExcel, you can apply outline subtotals to organize the sorted data into groups and display subtotals at the end of
each group.

Create Outline Subtotals

The outline subtotals are created using the Subtotal method of IRange interface. The method provides different
parameters to group by fields, assign subtotal function, replace existing subtotals, add page breaks and place summary
data.

The below sample data is used to create outline subtotals:

C#

public void PopulateData(Workbook workbook)
{
 IWorksheet worksheet = workbook.Worksheets[0];

 // Defining data in the range
 worksheet.Range["A1:C20"].Value = new object[,]
 {
 {"Item", "Units", "Unit Price"},
 {"Pen Set", 62, 4.99},
 {"Binder", 29, 1.99},
 {"Pen Set", 55, 12.49},
 {"Binder", 81, 19.99},
 {"Pen Set", 42, 23.95},

Documents for Excel, .NET Edition 94

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 {"Pencil", 35, 4.99},
 {"Desk", 3, 275},
 {"Desk", 2, 125},
 {"Pencil", 7, 1.29},
 {"Pen Set", 16, 15.99},
 {"Pen", 76, 1.99},
 {"Binder", 28, 8.99},
 {"Binder", 57, 19.99},
 {"Pen", 64, 8.99},
 {"Pencil", 14, 1.29},
 {"Pen", 15, 19.99},
 {"Binder", 11, 4.99},
 {"Pen Set", 96, 4.99},
 {"Binder", 94, 19.99}
 };

Refer to the below example code to create outline subtotals.

C#

IWorksheet _worksheet = workbook.Worksheets[0];

//Sort by value, use Sort() method.
_worksheet.Range["A2:C20"].Sort(_worksheet.Range["A2:A20"], orientation:
SortOrientation.Columns);

//Create groups and sub-total the grouped values using Subtotal() method
_worksheet.Range["A1:D20"].Subtotal(1, ConsolidationFunction.Sum, new[] { 2, 3 });

//Save workbook
workbook.Save("OutlineSubtotal.xlsx");

Documents for Excel, .NET Edition 95

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Remove Outline Subtotals

The outline subtotals can be removed using the RemoveSubtotal method of the IRange interface.

Refer to the below example code to remove outline subtotals.

C#

Workbook workbook = new Workbook();
workbook.Open("OutlineSubtotal.xlsx");

IWorksheet _worksheet = workbook.Worksheets[0];

//Remove Subtotals, pass the cell range inclusive of the subtotal/total rows
_worksheet.Range["A1:C26"].RemoveSubtotal();

//Save workbook
workbook.Save("OutlineNoSubtotal.xlsx");

Outline Column
Outline columns can be used to organize large amounts of data into meaningful groups.

GcExcel allows you to add outline columns to view hierarchical data in a tree view and show or hide it from view. The
OutlineColumn property of IWorksheet interface can be used to add the outline column. The row outlines are
automatically created by adding the outline column. When a worksheet is saved to Excel, the outline column is not
displayed but the row outlines are retained.

The indent level of a cell can be set by using the IndentLevel property of the IRange interface. The maximum indentation
level can be set by using MaxLevel property of IOutlineColumn interface whose default value is 10.

Documents for Excel, .NET Edition 96

Copyright © 2021 GrapeCity, Inc. All rights reserved.

You can also use the Refresh method of IOutlineColumn interface to rebuild the tree data structure based on the current
outline column options and indents.

The outline column can also be exported to PDF and imported or exported to JSON to interact with SpreadJS.

Using Code

Refer to the below example code to create outline column.

C#

 IWorkbook workbook = new Workbook();
 IWorksheet worksheet = workbook.Worksheets[0];

 //Set data.
 object[,] data = new object[,]{
{ "Preface", "1", 1 } ,
{ "Java SE5 and SE6", "1.1", 2 },
{ "Java SE6", "1.1.1", 2 },
{ "The 4th edition", "1.2", 2 },
{ "Changes", "1.2.1", 3 },
{ "Note on the cover design", "1.3", 4 },
{ "Acknowledgements", "1.4", 4 },
{ "Introduction", "2", 9 },
{ "Prerequisites", "2.1", 9 },
{ "Learning Java", "2.2", 10 },
{ "Goals", "2.3", 10 },
{ "Teaching from this book", "2.4", 11 },
{ "JDK HTML documentation", "2.5", 11 },
{ "Exercises", "2.6", 12 },
{ "Foundations for Java", "2.7", 12 },
{ "Source code", "2.8", 12 },
{ "Coding standards", "2.8.1", 14 },
{ "Errors", "2.9", 14 },
{ "Introduction to Objects", "3", 15 },
{ "The progress of abstraction", "3.1", 15 },
{ "An object has an interface", "3.2", 17 },
{ "An object provides services", "3.3", 18 },
{ "The hidden implementation", "3.4", 19 },
{ "Reusing the implementation", "3.5", 20 },
{ "Inheritance", "3.6", 21 },
{ "Is-a vs. is-like-a relationships", "3.6.1", 24 },
{ "Interchangeable objects with polymorphism", "3.7", 25 },
{ "The singly rooted hierarchy", "3.8", 28 },
{ "Containers", "3.9", 28 },
{ "Parameterized types (Generics)", "3.10", 29 },
{ "Object creation & lifetime", "3.11", 30 },
{ "Exception handling: dealing with errors", "3.12", 31 },
{ "Concurrent programming", "3.13", 32 },

Documents for Excel, .NET Edition 97

Copyright © 2021 GrapeCity, Inc. All rights reserved.

{ "Java and the Internet", "3.14", 33 },
{ "What is the Web?", "3.14.1", 33 },
{ "Client-side programming", "3.14.2", 34 },
{ "Server-side programming", "3.14.3", 38 },
{ "Summary", "3.15", 38 }
};
 worksheet.Range["A1:C38"].Value = data;

 //Set ColumnWidth.
 worksheet.Range["A:A"].ColumnWidthInPixel = 310;
 worksheet.Range["B:C"].ColumnWidthInPixel = 150;

 //Set IndentLevel.
 for (int i = 0; i < data.GetLength(0); i++)
 {
 worksheet.Range[i, 0].IndentLevel = (int)data[i, 3];
 }

 //Show the summary row above the detail rows.
 worksheet.Outline.SummaryRow = SummaryRow.Above;

 //Don't show the row outline when interacting with SJS, the exported excel file
still show the row outline.
 worksheet.ShowRowOutline = false;

 //Set outline column.
 worksheet.OutlineColumn.ColumnIndex = 0;
 worksheet.OutlineColumn.ShowCheckBox = true;
 worksheet.OutlineColumn.ShowImage = true;
 worksheet.OutlineColumn.MaxLevel = 2;
 worksheet.OutlineColumn.Images.Add(new ImageSource(File.Open("archiverFolder.png",
FileMode.Open), ImageType.PNG));
 worksheet.OutlineColumn.Images.Add(new ImageSource(File.Open("newFolder.png",
FileMode.Open), ImageType.PNG));
 worksheet.OutlineColumn.Images.Add(new ImageSource(File.Open("docFile.png",
FileMode.Open), ImageType.PNG));
 worksheet.OutlineColumn.CollapseIndicator = new
ImageSource(File.Open("decreaseIndicator.png", FileMode.Open), ImageType.PNG);
 worksheet.OutlineColumn.ExpandIndicator = new
ImageSource(File.Open("increaseIndicator.png", FileMode.Open), ImageType.PNG);

 worksheet.OutlineColumn.SetCheckStatus(0, true);
 worksheet.OutlineColumn.SetCollapsed(1, true);

 //Print the headings & gridlines.
 worksheet.PageSetup.PrintHeadings = true;
 worksheet.PageSetup.PrintGridlines = true;

Documents for Excel, .NET Edition 98

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 //Save to json/excel/pdf.
 workbook.ToJson(new FileStream("outlineColumn1.json", FileMode.Create));
 workbook.Save("outlineColumn1.xlsx");
 workbook.Save("outlineColumn1.pdf");

Note: The images, checkbox, expand or collapse indicator images are not visible in Excel as it does not supports them
but they can be viewed in PDF and SpreadJS.

 The below image shows the Excel output of above code snippet:

 The below image shows the PDF output of above code snippet:

Documents for Excel, .NET Edition 99

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Conditional Formatting
In order to highlight important information in rows or columns of a worksheet, GcExcel .NET allows users to create
conditional formatting rules for individual cells or a range of cells based on cell values. If the format condition matches
with the cell value, it is assumed as true and the cell is formatted as per the specified rule.

For instance, let us assume you want a cell or a range of cells to appear in italics when the value entered in them is lower
than 90. To accomplish this, you would apply a conditional formatting rule that will change the format of the cell as soon
as the condition is met. Other cells will appear in general format which is the default format of the cells in a spreadsheet.

You can apply conditional formatting in individual cells or a range of cells using rules or conditional operators. The set of
conditional formatting rules for a range is represented with the FormatConditions property of the IRange interface.

Shared below is a list of conditional formatting rules that can be applied in a worksheet.

Documents for Excel, .NET Edition 100

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Cell Value Rule
Date Occurring Rule
Average Rule
Color Scale Rule
Data Bar Rule
Top Bottom Rule
Unique Rule
Icon Sets Rule
Expression Rule

If you want to delete the formatting rule applied to the cell range in a worksheet, you can do it by using the Delete
method of IFormatCondition interface

Cell Value Rule
The cell value rule compares values entered in the cells with the condition specified in the conditional formatting rule. In
order to add a cell value rule, you can use the Formula1 property and Formula2 property of the IFormatCondition
interface. You can also use the Operator property of the IFormatCondition interface to set the operator that will perform
the comparison operation, like "Between", "Less Than" etc.

Refer to the following example code to add cell value rule to a range of cells in a worksheet.

C#

// Assigning value using object
worksheet.Range["A1:A5"].Value = new object[,]
{
 {1},{3},{5},{7},{9}
};
// Defining format rules.
IFormatCondition condition =
worksheet.Range["A1:A5"].FormatConditions.Add(FormatConditionType.CellValue,
FormatConditionOperator.Between, 1, 5) as IFormatCondition;
condition.NumberFormat = "0.000";

Date Occurring Rule
The date occurring rule in conditional formatting feature compares the values entered in date format in the cells or a
range of cells. This rule can be added using the DateOperator property of the IFormatCondition interface.

Refer to the following example code to add date occurring rule to a range of cells in a worksheet.

C#

// Adding Date occuring rules
IFormatCondition condition =
worksheet.Range["A1:A4"].FormatConditions.Add(FormatConditionType.TimePeriod) as
IFormatCondition;
condition.DateOperator = TimePeriods.Yesterday;

Documents for Excel, .NET Edition 101

Copyright © 2021 GrapeCity, Inc. All rights reserved.

condition.Interior.Color = Color.FromArgb(128, 0, 128);

DateTime now = DateTime.Today;
worksheet.Range["A1"].Value = now.AddDays(-2);
worksheet.Range["A2"].Value = now.AddDays(-1);
worksheet.Range["A3"].Value = now;
worksheet.Range["A4"].Value = now.AddDays(1);

Average Rule
The average rule in conditional formatting can be added and deleted using the properties and methods of
the IAboveAverage interface.

Refer to the following example code to add average rule to a range of cells in a worksheet.

C#

// Adding average rule
worksheet.Range["A1"].Value = 1;
worksheet.Range["A2"].Value = 2;
worksheet.Range["A3"].Value = 3;
worksheet.Range["A4"].Value = 4;
worksheet.Range["A5"].Value = 60000000;

IAboveAverage averageCondition =
worksheet.Range["A1:A5"].FormatConditions.AddAboveAverage();
averageCondition.AboveBelow = AboveBelow.AboveAverage;
averageCondition.NumStdDev = 2;
averageCondition.NumberFormat = "0.00";

Color Scale Rule
The color scale rule uses a sliding color scale to format cells or a range of cells. For instance, if numeric cell value 1 is
represented with color yellow and 50 with green, then 25 would be light green. This rule can be added using the
properties and methods of the IColorScale interface.

Refer to the following example code to add color scale rule to a cell range in a worksheet.

C#

// Adding colorscale rule
IColorScale twoColorScaleRule =
worksheet.Range["A2:E2"].FormatConditions.AddColorScale(ColorScaleType.TwoColorScale);

worksheet.Range["A2"].Value = 1;
worksheet.Range["B2"].Value = 2;
worksheet.Range["C2"].Value = 3;
worksheet.Range["D2"].Value = 4;

Documents for Excel, .NET Edition 102

Copyright © 2021 GrapeCity, Inc. All rights reserved.

worksheet.Range["E2"].Value = 5;

twoColorScaleRule.ColorScaleCriteria[0].Type = ConditionValueTypes.Number;
twoColorScaleRule.ColorScaleCriteria[0].Value = 1;
twoColorScaleRule.ColorScaleCriteria[0].FormatColor.Color = Color.FromArgb(255, 0, 0);

twoColorScaleRule.ColorScaleCriteria[1].Type = ConditionValueTypes.Number;
twoColorScaleRule.ColorScaleCriteria[1].Value = 5;
twoColorScaleRule.ColorScaleCriteria[1].FormatColor.Color = Color.FromArgb(0, 255, 0);

Data Bar Rule
The data bar rule in conditional formatting displays a bar in the cell on the basis of cell values entered in a range. This rule
can be added using the properties and methods of the IDataBar interface.

Refer to the following example code to add data bar rule to a range of cells in a worksheet.

C#

// Adding Databar rule
worksheet.Range["A1:A5"].Value = new object[,]
{
 {1},
 {2},
 {3},
 {4},
 {5}
};

IDataBar dataBar = worksheet.Range["A1:A5"].FormatConditions.AddDatabar();

dataBar.MinPoint.Type = ConditionValueTypes.LowestValue;
dataBar.MinPoint.Value = null;
dataBar.MaxPoint.Type = ConditionValueTypes.HighestValue;
dataBar.MaxPoint.Value = null;

dataBar.BarFillType = DataBarFillType.Solid;
dataBar.BarColor.Color = Color.Green;
dataBar.Direction = DataBarDirection.Context;
dataBar.AxisColor.Color = Color.Red;
dataBar.AxisPosition = DataBarAxisPosition.Automatic;
dataBar.NegativeBarFormat.BorderColorType = DataBarNegativeColorType.Color;
dataBar.NegativeBarFormat.BorderColor.Color = Color.FromArgb(128, 0, 212);
dataBar.NegativeBarFormat.ColorType = DataBarNegativeColorType.Color;
dataBar.NegativeBarFormat.Color.Color = Color.FromArgb(128, 0, 240);
dataBar.ShowValue = false;

Documents for Excel, .NET Edition 103

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Top Bottom Rule
The top bottom rule checks whether the values in the top or bottom of a cell range match with the required values in the
cell. In case the values don't match, the data is considered as invalid. This rule can be added using the properties and
methods of the ITop10 interface.

The following options are available while adding top bottom rule in a worksheet:

Top 10
Top 10%
Bottom 10
Bottom 10%
Above Average
Below Average

Refer to the following example code to add top bottom rule in a worksheet.

C#

// Adding ToBottom rule
worksheet.Range["A1:A5"].Value = new object[,]
{
 {1},
 {2},
 {3},
 {4},
 {5}
};

ITop10 condition = worksheet.Range["A1:A5"].FormatConditions.AddTop10();
condition.TopBottom = TopBottom.Top10Top;
condition.Rank = 50;
condition.Percent = true;
condition.Interior.Color = Color.FromArgb(128, 0, 128);

Unique Rule
The unique rule in conditional formatting is applied to check whether the value entered in a cell is a unique value in that
particular range. This is possible only when the duplication option is set to false. To check for the duplicate values, the
duplicate rule is applied separately.

Unique rule can be added using the properties and methods of the IUniqueValues interface.

Refer to the following example code to add unique rule in a worksheet.

C#

// Adding Unique Rule
worksheet.Range["A1:A5"].Value = new object[,]
{

Documents for Excel, .NET Edition 104

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 {1},
 {2},
 {1},
 {3},
 {4}
};

IUniqueValues condition2 = worksheet.Range["A1:A5"].FormatConditions.AddUniqueValues();
condition2.DupeUnique = DupeUnique.Unique;
condition2.Font.Name = "Arial";

Icon Sets Rule
The icon sets rule in conditional formatting displays the icons on the basis of values entered in the cells. Each value
represents a distinct icon that appears in a cell if it matches the icon sets rule applied on it. This rule can be added using
the properties and methods of the IIconSetCondition interface.

Refer to the following example code to add icon sets rule in a worksheet.

C#

// Adding IconSets rule
IIconSetCondition condition =
worksheet.Range["A1:A5"].FormatConditions.AddIconSetCondition();
condition.IconSet = workbook.IconSets[IconSetType.Icon3Symbols];
condition.IconCriteria[1].Operator = FormatConditionOperator.GreaterEqual;
condition.IconCriteria[1].Value = 50;
condition.IconCriteria[1].Type = ConditionValueTypes.Percent;
condition.IconCriteria[2].Operator = FormatConditionOperator.GreaterEqual;
condition.IconCriteria[2].Value = 70;
condition.IconCriteria[2].Type = ConditionValueTypes.Percent;

worksheet.Range["A1"].Value = 1;
worksheet.Range["A2"].Value = 2;
worksheet.Range["A3"].Value = 3;
worksheet.Range["A4"].Value = 4;
worksheet.Range["A5"].Value = 5;

Expression Rule
The expression rule in conditional formatting is used to set the expression rule's formula. This rule can be added using
the properties and methods of the IFormatCondition interface.

Refer to the following example code to add expression rule in a worksheet.

C#

// Adding Expression Rule

Documents for Excel, .NET Edition 105

Copyright © 2021 GrapeCity, Inc. All rights reserved.

worksheet.Range["A1:B5"].Value = new object[,]
{
 {1, 2},
 {0, 1},
 {0, 0},
 {0, 3},
 {4, 5}
};
IFormatCondition condition =
worksheet.Range["B1:B5"].FormatConditions.Add(FormatConditionType.Expression, 0, "=A1")
as IFormatCondition;
condition.Interior.Color = Color.FromArgb(255, 0, 0);

Data Validations
GcExcel .NET provides users with the ability to validate data by restricting the type of information format and the values
that can be entered in cells of a worksheet. You can create distinct validation scenarios for individual cells or a range of
cells as per your requirements.

Using the data validation feature, you can perform the following tasks in a spreadsheet:

Generate a list of entries by putting a check on the values allowed in cells.
Prompt messages to describe the type of data values that can be entered in a cell.
Figure out if entry in a particular cell or a range of cells is correct or not on the basis of calculations performed on
other cells.
Set a range of values (numeric or alphabetic) allowed in cells or a range of cells.
Display error alert messages when invalid data is entered in a cell.

You can use the data validation feature in GcExcel .NET to ensure users enter only the valid values into a cell while working
in a spreadsheet.

For instance, let's say you have a worksheet where you want users to enter only whole numbers between 1 to 15. To
accomplish this, you can create a data validation rule that restricts users to enter cell values other than a whole number
between 1 to 15. You can even create custom dropdown lists to specify the possible values that can be entered in the cells
or display messages or error alerts to validate the data and get notified if there is something wrong with the information
entered in the worksheets.

Applying data validations in worksheets involves the following tasks.

Add Validations
Modify Validations
Delete Validation

Add Validations
You can use the Add method of the IValidation interface to apply data validation to individual cells or a range of cells in
a spreadsheet. A single cell can have only one validation rule and if you try to apply validation on a cell that already
possesses a validation rule, it will throw an exception.

Validation rule instance for a range is represented with the Validation property of the IRange interface. If you want to

Documents for Excel, .NET Edition 106

Copyright © 2021 GrapeCity, Inc. All rights reserved.

know whether a cell range already contains the validation rule, you can use the HasValidation property of the IRange
interface. If all the cells in a range possess the same validation rule applied to them, it is represented with
the ValidationIsSame property of the IRange interface.

Shared below is a list of data validations operations that can be implemented in GcExcel .NET.

Add Whole Number Validation
Add Decimal Validation
Add List Validation
Add Date Validation
Add Time Validation
Add Text Length Validation
Add Custom Validation

Add whole number validation

You can validate your data and ensure users add only whole numbers in cells or a range of cells by applying the whole
number validation in a worksheet.

Refer to the following example code to add whole number validation.

C#

//Add whole number validation
worksheet.Range["A1:A3"].Validation.Add(ValidationType.Whole, ValidationAlertStyle.Stop,
ValidationOperator.Between, 1, 8);
IValidation validation = worksheet.Range["A1:A3"].Validation;
validation.IgnoreBlank = true;
validation.InputTitle = "Tips";
validation.InputMessage = "Input a value between 1 and 8, please";
validation.ErrorTitle = "Error";
validation.ErrorMessage = "input value does not between 1 and 8";
validation.ShowInputMessage = true;
validation.ShowError = true;

Add decimal validation

You can validate your data and ensure users add only decimal numbers in cells or a range of cells by applying the decimal
validation in a worksheet.

Refer to the following example code to add decimal validation.

C#

//Add Decimal validation
worksheet.Range["B1:B3"].Validation.Add(ValidationType.Decimal,
ValidationAlertStyle.Stop, ValidationOperator.Between, 3.4, 102.8);

Add list validation

You can also validate lists inserted in cells or a range of cells by applying the list validation in your worksheet .

Refer to the following example code to add list validation.

Documents for Excel, .NET Edition 107

Copyright © 2021 GrapeCity, Inc. All rights reserved.

C#

//Add List Validation
worksheet.Range["C4"].Value = "aaa";
worksheet.Range["C5"].Value = "bbb";
worksheet.Range["C6"].Value = "ccc";

//Use cell reference.
worksheet.Range["C1:C3"].Validation.Add(ValidationType.List, ValidationAlertStyle.Stop,
ValidationOperator.Between, "=c4:c6");

//Or use string.
//this._worksheet.Range["C2:E4"].Validation.Add(ValidationType.List,
ValidationAlertStyle.Stop, ValidationOperator.Between, "aaa, bbb, ccc");

//Display list dropdown
IValidation dvalidation = worksheet.Range["C1:C3"].Validation;
dvalidation.InCellDropdown = true;

Add date validation

You can validate data entered in date format in cells or a range of cells by applying the date validation in a worksheet.

Refer to the following example code to add date validation.

C#

//Add Date validation
worksheet.Range["D1:D3"].Validation.Add(ValidationType.Date, ValidationAlertStyle.Stop,
ValidationOperator.Between, new DateTime(2015, 12, 13), new DateTime(2015, 12, 18));

Add time validation

You can validate the time entered in cells or a range of cells by applying the time validation in a worksheet.

Refer to the following example code to add time validation.

C#

//Add Time Validation
worksheet.Range["E1:E3"].Validation.Add(ValidationType.Time, ValidationAlertStyle.Stop,
ValidationOperator.Between, new TimeSpan(13, 30, 0), new TimeSpan(18, 30, 0));

Add text length validation

You can validate the length of the text entered in cells or a range of cells by applying the text length validation in a
worksheet.

Refer to the following example code to add text length validation.

C#

Documents for Excel, .NET Edition 108

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//Add Text Length Validation
worksheet.Range["C2:E4"].Validation.Add(ValidationType.TextLength,
ValidationAlertStyle.Stop, ValidationOperator.Between, 2, 3);

Add custom validation

You can add a custom validation rule to validate data in a worksheet by applying custom validation.

Refer to the following example code to add custom validation.

C#

//Add custom validation
worksheet.Range["A2"].Value = 1;
worksheet.Range["A3"].Value = 2;
worksheet.Range["C2"].Value = 1;
//when use custom validation, validationOperator and formula2 parameters will be ignored
even if you have given.
worksheet.Range["A2:A3"].Validation.Add(ValidationType.Custom,
ValidationAlertStyle.Information, formula1: "=C2");

Delete Validation
You can delete the applied validation rule using the Delete method of the IValidation interface.

Refer to the following example code to know how you can delete validation rule applied to a cell or a range of cells in a
worksheet.

C#

//Add validation
worksheet.Range["A1:A3"].Validation.Add(ValidationType.Whole, ValidationAlertStyle.Stop,
ValidationOperator.Between, 1, 8);
worksheet.Range["B1:B3"].Validation.Add(ValidationType.Whole, ValidationAlertStyle.Stop,
ValidationOperator.Between, 11, 18);

//Delete validation.
worksheet.Range["A1:A2"].Validation.Delete();

Modify Validation
You can change the validation rule for a range by using either of the two ways described below:

Set properties of the IValidation interface (Type property, Formula1 property, Formula2 property, and many
more).
Use Delete method of the IValidation interface to first delete validation rule and then use the Add method to add
the new rule.

Documents for Excel, .NET Edition 109

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Refer to the following example code to know how you can modify an existing validation rule applied to a cell or a range of
cells in a worksheet.

C#

//Add validation
worksheet.Range["A1:A2"].Validation.Add(ValidationType.Date, ValidationAlertStyle.Stop,
ValidationOperator.Between, new TimeSpan(13, 30, 0), new TimeSpan(18, 30, 0));

//Modify validation.
worksheet.Range["A1:A2"].Validation.Type = ValidationType.Time;
worksheet.Range["A1:A2"].Validation.AlertStyle = ValidationAlertStyle.Stop;
worksheet.Range["A1:A2"].Validation.Operator = ValidationOperator.Between;
worksheet.Range["A1:A2"].Validation.Formula1 = new TimeSpan(13, 30,
0).TotalDays.ToString();
worksheet.Range["A1:A2"].Validation.Formula2 = new TimeSpan(18, 30,
0).TotalDays.ToString();

Data Binding
GcExcel supports data binding which allows you to generate data bound reports and view them in Excel. Data binding can
be achieved by binding a data source with a sheet, cell or table column. You can also perform JSON I/O of the binding
path to interact with SpreadJS.

Sheet Binding

A data source can be bound to a sheet by using the DataSource property of IWorksheet interface. The data sources
supported for binding a sheet are DataTable or an IEnumerable collection. Each worksheet can have only one data source.

To bind the data source fields to sheet columns automatically, you can set the AutoGenerateColumns property of
IWorksheet interface to true. The default value is also true.

To bind the data source fields to sheet columns manually, you can set the AutoGenerateColumns property of IWorksheet
interface to false and use the BindingPath property of IRange interface to set the binding path of the data source field to
the sheet columns.

For eg. If you want to display the 'TeamName' field in column D, the binding path for the 'TeamName' field will be column
D.

Refer to the below example code to bind a DataTable to the sheet columns manually.

C#

//create a new workbook
Workbook workbook = new Workbook();

DataTable teamInfo = new DataTable();
teamInfo.Columns.Add(new DataColumn("ID", typeof(Int32)));
teamInfo.Columns.Add(new DataColumn("Name", typeof(string)));
teamInfo.Columns.Add(new DataColumn("Score", typeof(Int32)));
teamInfo.Columns.Add(new DataColumn("Team", typeof(string)));

Documents for Excel, .NET Edition 110

Copyright © 2021 GrapeCity, Inc. All rights reserved.

teamInfo.Rows.Add(10, "Bob", 12, "Xi'An");
teamInfo.Rows.Add(11, "Tommy", 6, "Xi'An");
teamInfo.Rows.Add(12, "Jaguar", 15, "Xi'An");
teamInfo.Rows.Add(12, "Lusia", 9, "Xi'An");

IWorksheet worksheet = workbook.Worksheets[0];

// Set AutoGenerateColumns as false
worksheet.AutoGenerateColumns = false;

//Bind columns manually.
worksheet.Range["A:A"].EntireColumn.BindingPath = "ID";
worksheet.Range["B:B"].EntireColumn.BindingPath = "Name";
worksheet.Range["C:C"].EntireColumn.BindingPath = "Score";
worksheet.Range["D:D"].EntireColumn.BindingPath = "Team";

// Set data source
worksheet.DataSource = teamInfo;

//save to an excel file
workbook.Save("SheetBindDatatable.xlsx");

 Cell Binding

A data source can be bound to a cell by using the DataSource property of IWorksheet interface. The data source
supported for binding a cell is custom object.

The BindingPath property of IRange interface can be used to set the binding path of the data source field to a cell. For
eg. If 'Area' field is to be displayed in cell A1, the binding path for the 'Area' field will be cell A1.

Refer to the below example code to bind custom object to cells.

C#

public void CellBinding()
{

 // create a new workbook
 Workbook workbook = new Workbook();

 var record = new SalesRecord
 {
 Area = "NorthChina",
 Salesman = "Hellen",
 Product = "Apple",
 ProductType = "Fruit",
 Sales = 120
 };

Documents for Excel, .NET Edition 111

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 IWorksheet worksheet = workbook.Worksheets[0];

 // Set binding path for cell.
 worksheet.Range["A1"].BindingPath = "Area";
 worksheet.Range["B2"].BindingPath = "Salesman";
 worksheet.Range["C2"].BindingPath = "Product";
 worksheet.Range["D3"].BindingPath = "ProductType";

 // Set data source.
 worksheet.DataSource = record;

 //save to an excel file
 workbook.Save("cellbinding.xlsx");

}
internal class SalesRecord
{
 public string Area;
 public string Salesman;
 public string Product;
 public string ProductType;
 public int Sales;
}

Table Binding

A data source can be bound to a table by using the DataSource property of IWorksheet interface. The data sources
supported for binding a table are DataSet or custom object which contains an IEnumerable field or property.
The BindingPath property of ITable interface can be used to set the binding path of data source to a table.

To bind the data source fields to table columns automatically, you can set the AutoGenerateColumns property of
IWorksheet interface to true. The default value is also true.

To bind the data source fields to table columns manually, you can set the AutoGenerateColumns property of IWorksheet
interface to false and use the DataField property of ITableColumn interface to set the binding path of the data source
field to the table columns.

For eg. 'T1' DataTable is bound to the first table and 'ID' field is bound to the first column of table.

Refer to the below example code to bind a dataset to table columns manually.

C#

//create a new workbook
Workbook workbook = new Workbook();

// DataSet
var team1 = new DataTable("T1");
team1.Columns.Add(new DataColumn("ID", typeof(Int32)));
team1.Columns.Add(new DataColumn("Name", typeof(string)));
team1.Columns.Add(new DataColumn("Score", typeof(Int32)));

Documents for Excel, .NET Edition 112

Copyright © 2021 GrapeCity, Inc. All rights reserved.

team1.Columns.Add(new DataColumn("Team", typeof(string)));

team1.Rows.Add(10, "Bob", 12, "Xi'An");
team1.Rows.Add(11, "Tommy", 6, "Xi'An");
team1.Rows.Add(12, "Jaguar", 15, "Xi'An");
team1.Rows.Add(12, "Lusia", 9, "Xi'An");

var team2 = new System.Data.DataTable("T2");
team2.Columns.Add(new DataColumn("ID", typeof(Int32)));
team2.Columns.Add(new DataColumn("Name", typeof(string)));
team2.Columns.Add(new DataColumn("Score", typeof(Int32)));
team2.Columns.Add(new DataColumn("Team", typeof(string)));

team2.Rows.Add(2, "Phillip", 9, "BeiJing");
team2.Rows.Add(3, "Hunter", 10, "BeiJing");
team2.Rows.Add(4, "Hellen", 8, "BeiJing");
team2.Rows.Add(5, "Jim", 9, "BeiJing");

var datasource = new System.Data.DataSet();
datasource.Tables.Add(team1);
datasource.Tables.Add(team2);

IWorksheet worksheet = workbook.Worksheets[0];

// Add tables
ITable table = worksheet.Tables.Add(worksheet.Range["B2:E6"], true);
ITable table2 = worksheet.Tables.Add(worksheet.Range["G2:J6"], true);

// Set not to auto generate table columns
table.AutoGenerateColumns = false;
table2.AutoGenerateColumns = false;

// Set table binding path
table.BindingPath = "T1";
table2.BindingPath = "T2";

// Set table column data field
table.Columns[0].DataField = "ID";
table.Columns[1].DataField = "Name";
table.Columns[2].DataField = "Score";
table.Columns[3].DataField = "Team";

table2.Columns[0].DataField = "ID";
table2.Columns[1].DataField = "Name";
table2.Columns[2].DataField = "Score";
table2.Columns[3].DataField = "Team";

// Set DataSet as datasource

Documents for Excel, .NET Edition 113

Copyright © 2021 GrapeCity, Inc. All rights reserved.

worksheet.DataSource = datasource;

//save to an excel file
workbook.Save("TableBindDataset.xlsx");

Limitation

GcExcel supports one-time data binding which means that the data will be populated only the first time when data source
is set, afterwards the data will not change even if the data in datasource changes.

Digital Signatures
Digital signatures are the proof of a document's authenticity. A digitally signed document assures that it has been
created by the signer and has not been changed in any way.

GcExcel allows users to add digital signatures to Excel spreadsheets to make them authentic and easier to validate.

Signature Lines
Signature lines act as a signature placeholder for digital signatures. They can be added to worksheet as signature line
shapes which can be signed further.

Add Signature Line

The AddSignatureLine method of ISignatureSet interface adds signature lines in a worksheet. You can also add
information about the intended signer and instructions for the signer by using various properties of ISignatureSetup
interface. When the workbook is opened again or sent to the intended signer as an Excel file, the signature line can be
seen along with a notification that their signature is requested.

Refer to the following example code to add signature line in a worksheet.

C#

var workbook = new Workbook();
IWorksheet activeSheet = workbook.ActiveSheet;

//add signature line
ISignatureSetup setup = workbook.Signatures.AddSignatureLine(activeSheet, 100.0,
50.0).Setup;
setup.ShowSignDate = false;
setup.AllowComments = false;
setup.SigningInstructions = "Please check the content before signing.";
setup.SuggestedSigner = "Shinzo Nagama";
setup.SuggestedSignerEmail = "shinzo.nagama@ea.com";
setup.SuggestedSignerLine2 = "Commander (Balanced)";

//save to Excel file
workbook.Save("addsignaturelines.xlsx");

Documents for Excel, .NET Edition 114

Copyright © 2021 GrapeCity, Inc. All rights reserved.

The below image shows the signature lines in Excel:

Copy Signature Lines

You can copy a signature line to another range of worksheet or to another worksheet by using any of the below:

Duplicate signature line - By using Duplicate method of IShape interface
Copy signature line's cell range - By using Copy method of IRange interface
Copy worksheet containing signature line - By using Copy method of IWorksheet interface

Refer to the following example code to copy a signature line to another range and another worksheet.

C#

//copy signature line to another range
IRange srcRange = activeSheet.Range["A1:I15"];
IRange destRange = activeSheet.Range["A16:I30"];
srcRange.Copy(destRange);

//duplicate signature line
signature.SignatureLineShape.Duplicate();

//copy signature line to another worksheet
activeSheet.Copy();

Delete Signature Lines

You can delete a signature line by using any of the below:

Delete signature line - By using Delete method of ISignature interface

Documents for Excel, .NET Edition 115

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Delete shape associated with signature line - By using Delete method of IShape interface

Refer to the following example code to delete signature line in a worksheet.

C#

//create a new signature line and delete with Signature.Delete
ISignature signatureForTest = newSignatureLine();
signatureForTest.Delete();

//create a new signature line and delete with Shape.Delete
signatureForTest = newSignatureLine();
IShape signatureLineShape = signatureForTest.SignatureLineShape;
signatureLineShape.Delete();

Move Signature Lines

Refer to the following example code to move signature lines to another range or a worksheet.

C#

//move signature line
signature.SignatureLineShape.Top += 100;
signature.SignatureLineShape.Left += 50;

List Signature Lines

Refer to the following example code to list signature lines in a worksheet.

C#

//add first signature line
ISignature signatureShinzo = signatures.AddSignatureLine(
 activeSheet, 100.0, 50.0);
ISignatureSetup setup1 = signatureShinzo.Setup;
setup1.ShowSignDate = false;
setup1.AllowComments = false;
setup1.SigningInstructions = "Please check the content before signing.";
setup1.SuggestedSigner = "Shinzo Nagama";
setup1.SuggestedSignerEmail = "shinzo.nagama@ea.com";
setup1.SuggestedSignerLine2 = "Commander (Balanced)";

//add second signature line
ISignature signatureKenji = signatures.AddSignatureLine(
 activeSheet, 100.0, 350.0);
ISignatureSetup setup2 = signatureKenji.Setup;
setup2.ShowSignDate = true;
setup2.AllowComments = true;
setup2.SigningInstructions = "Please check the content before signing!";
setup2.SuggestedSigner = "Kenji Tenzai";

Documents for Excel, .NET Edition 116

Copyright © 2021 GrapeCity, Inc. All rights reserved.

setup2.SuggestedSignerEmail = "kenji.tenzai@ea.com";
setup2.SuggestedSignerLine2 = "Commander (Mecha)";

//list signatures with indexes
for (var i = 0; i < signatures.Count; i++)
{
 var signature = signatures[i];
 //change SuggestedSigner
 if (i == 0)
 signature.Setup.SuggestedSigner = "Shinzo Nagama 123";
 //change SuggestedSignerLine2
 if (i == 1)
 signature.Setup.SuggestedSignerLine2 = "Commander (Mecha 1234)";
}

The SignatureLineShape property in ISignature interface can be used while using signature line as a shape. Its members
and their behavior is elaborated in the below table:

SignatureLineShape members Get or Call Behavior Set Behavior

Adjustments Supported #N/A

Adjustments.Count Supported #N/A

Adjustments.Item Not Supported Not Supported

Adjustments.GetEnumerator Not Supported #N/A

AutoShapeType Supported Not Supported

BottomRightCell Supported #N/A

Chart Not Supported #N/A

Connector Supported #N/A

ConnectorFormat Not Supported #N/A

Fill Not Supported #N/A

GroupItems Not Supported #N/A

HasChart Supported #N/A

Hyperlink Not Supported #N/A

IsPrintable Supported Supported

Line Not Supported #N/A

Locked Supported Supported

Name Supported Supported

Parent Supported #N/A

ParentGroup Not Supported #N/A

Documents for Excel, .NET Edition 117

Copyright © 2021 GrapeCity, Inc. All rights reserved.

PictureFormat Supported #N/A

PictureFormat.ColorType Supported Supported

PictureFormat.Brightness Supported Supported

PictureFormat.Contrast Supported Supported

PictureFormat.Crop Not Supported #N/A

PictureFormat.CropLeft, CropTop,
CropRight and CropBottom

Not Supported Not Supported

Placement Supported Supported

Rotation Supported Not Supported

TextFrame Not Supported #N/A

ThreeD Not Supported #N/A

Title Not Supported Not Supported

TopLeftCell Supported #N/A

Left, Top, Right and Bottom Supported Supported

Type Supported Supported

Transparency Not Supported Not Supported

Ungroup Not Supported #N/A

Visible Supported Supported

ZOrderPosition Supported Supported

The signature lines can also be exported to PDF documents. Refer Export Signature Lines.

Add Digital Signatures
Digital signatures can be added to Excel spreadsheet by signing the signature lines using a signing
certificate which proves signer's identity. Please follow the steps mentioned in Generate Certificate document to
generate the certificate file (.pfx).

The Sign method of ISignature interface can be used to add digital signatures. In order to commit signatures, the
workbook should be saved with xlsx or xlsm extension. A workbook containing digital signatures is 'marked as final' to
discourage editing.

Refer to the following example code to add digital signatures in a worksheet.

C#

//create a new workbook
var workbook = new Workbook();

//add signature line
ISignature signature = workbook.Signatures.AddSignatureLine(

Documents for Excel, .NET Edition 118

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 workbook.ActiveSheet, 100.0, 50.0);
ISignatureSetup setup = signature.Setup;
setup.ShowSignDate = true;
setup.AllowComments = true;
setup.SigningInstructions = "<your signing instructions>";
setup.SuggestedSigner = "<signer's name>";
setup.SuggestedSignerEmail = "example@microsoft.com";
setup.SuggestedSignerLine2 = "<signer's title>";

//add signature details
var details = new SignatureDetails
{
 Address1 = "<your address>",
 Address2 = "<address 2>",
 SignatureComments = "Final",
 City = "<your city>",
 StateOrProvince = "<your state or province>",
 PostalCode = "<your postal code>",
 CountryName = "<your country or region>",
 ClaimedRole = "<your role>",
 CommitmentTypeDescription = "Approved",
 CommitmentTypeQualifier = "Final"
};

//initialize certificate
var cert = new X509Certificate2("GcExcelTest.pfx", "test@123");
signature.Sign(cert, "John Williams", details);

//save to an excel file to commit signatures
workbook.Save("digitalsignatures.xlsx");

The below image shows digital signature in Excel:

Documents for Excel, .NET Edition 119

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Add Non Visible Signatures
You can also add invisible digital signatures to a workbook by using AddNonVisibleSignature method of ISignatureSet
interface. The non visible digital signatures do not appear in any worksheet. However, they can be viewed by clicking
‘View Signatures’ dialog in Excel.

Refer to the following example code to add non visible signatures in a workbook.

C#

//create a new workbook
var workbook = new Workbook();

//add non visible signatures
ISignature signature = workbook.Signatures.AddNonVisibleSignature();
var details = new SignatureDetails
{
 Address1 = "<your address>",
 Address2 = "<address 2>",
 SignatureComments = "Final",
 City = "<your city>",
 StateOrProvince = "<your state or province>",
 PostalCode = "<your postal code>",
 CountryName = "<your country or region>",
 ClaimedRole = "<your role>",
 CommitmentTypeDescription = "Approved",
 CommitmentTypeQualifier = "Final"
};

Documents for Excel, .NET Edition 120

Copyright © 2021 GrapeCity, Inc. All rights reserved.

var cert = new X509Certificate2("GcExcelTest.pfx", "test@123");
signature.Sign(cert, details);

//save to an excel file
workbook.Save("nonvisiblesignatures.xlsx");

Countersign Signatures
A digitally signed workbook becomes read-only. When it is opened again in GcExcel, its digital signatures must
be preserved before closing it. To achieve this:

Countersign the Workbook

A digitally signed workbook should be countersigned if it is opened and any modification is done to it. Otherwise, the
existing signatures are removed after saving the workbook as xlsx or xlsm. The Countersign method of ISignature
interface can be used to countersign a signature using the same certificate.

Refer to the following example code to open a digitally signed workbook and countersign it after modifying the
worksheet.

C#

//open a digitally signed workbook
workbook.Open("signsignaturelines.xlsx");

//modify the worksheet
workbook.Worksheets[0].Range["A1"].Value = "Modified";

//countersign using same certificate
workbook.Signatures[0].Countersign(cert);

//save to an excel file
workbook.Save("countersign.xlsx");

Open the Workbook in Digital Signature Only Mode

A digitally signed workbook can be opened in digital signature only mode by using DigitalSignatureOnly property in
XlsxOpenOptions class. In this mode, you can perform the following operations while preserving existing signatures:

Sign existing signature lines
Remove signatures from signed signature lines
Add and Remove non visible signatures

Refer to the following example code to open a digitally signed workbook in digital signature only mode and add non
visible signatures to it.

C#

workbook.Open("signsignaturelines.xlsx");

Documents for Excel, .NET Edition 121

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//use DigitalSignatureOnly mode, because the workbook was already signed.
//if you don't open it with digital signature only mode,
//all existing signatures will be removed after saving the workbook.
XlsxOpenOptions openOption = new XlsxOpenOptions { DigitalSignatureOnly = true };

//add signature to this workbook
var signature = workbook.Signatures.AddNonVisibleSignature();
signature.Sign(cert, details);

//commit signatures
workbook.Save("AddNonVisibleSignatureToSignedWorkbook.xlsx");

Verify Digital Signatures
GcExcel allows you to verify digital signatures by using IsValid property of ISignature interface. You can also extract the
results of certificate verification by using X509ChainStatusFlags enumeration.

Refer to the following example code to verify digital signatures in a signed workbook.

C#

//create a new workbook
var workbook = new Workbook();
workbook.Open("digitalsignatures.xlsx");
ISignatureSet signatures = workbook.Signatures;

bool signed = false;
bool valid = false;
X509Certificate2 certificate = null;

// Verify signature
foreach (var signature in signatures)
{
 if (signature.IsSigned)
 {
 signed = true;
 certificate = signature.Details.SignatureCertificate;
 valid = signature.IsValid;
 break;
 }
}

// Verify certificate
if (certificate != null)
{
 var status = X509ChainStatusFlags.NoError;

 // build the certificate chain

Documents for Excel, .NET Edition 122

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 var chain = new X509Chain();
 bool certValid = chain.Build(certificate);

 // inspect the results
 if (!certValid)
 {
 var chainStatus = chain.ChainStatus;
 for (var i = 0; i < chainStatus.Length; i++)
 {
 status |= chainStatus[i].Status;
 }
 }

 // Extract the certificate verification result
 var isCertificateExpired = status.HasFlag(X509ChainStatusFlags.NotTimeValid);
 var isCertificateRevoked = status.HasFlag(X509ChainStatusFlags.Revoked);
 var isCertificateUntrusted = status.HasFlag(X509ChainStatusFlags.UntrustedRoot);

 Console.WriteLine("Expired:" + isCertificateExpired);
 Console.WriteLine("Revoked:" + isCertificateRevoked);
 Console.WriteLine("UnTrusted:" + isCertificateUntrusted);
}

Remove Digital Signatures
GcExcel allows you to remove digital signatures from a signed signature line by using Delete method of ISignature
interface. The signature line is retained but can be deleted separately (as explained above).

Refer to the following example code to delete digital signatures from signed signature line in a workbook.

C#

//create a new workbook
var workbook = new Workbook();

// This file contains 1 signed signature line and
// a not signed signature line.
workbook.Open("signsignaturelines.xlsx");

//use DigitalSignatureOnly mode, because the workbook was already signed
XlsxOpenOptions openOption = new XlsxOpenOptions { DigitalSignatureOnly = true };

//remove signature of signed signature line
foreach (var signature in workbook.Signatures)
{
 if (signature.IsSignatureLine && signature.IsSigned)
 {
 //remove digital signature.

Documents for Excel, .NET Edition 123

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 //the signature line will not be removed from the SignatureSet
 //in digital signature only mode.
 //because signature lines are shapes
 signature.Delete();
 break;
 }
}

//commit signatures
workbook.Save("deletesignaturefromsignatureline.xlsx");

Note: The signature formats observed in this feature have been tested with following versions:

Target Office version

The office version used to observe file structures when developing this feature is Office 365, build 16.0.12228.

This version can be observed by using SignatureDetails.ApplicationVersion property.

Minimum Office version

The minimum Office version required to open the signed workbook is Office 2013.

Limitations
Only Microsoft Office signature lines are supported.
Only PFX certificates are supported.
When signing a workbook, .NET Framework 4.6.2 or higher is required if the private key is DSA. ECDSA is not
supported.
Emf image files are not supported. Hence, when exporting signature lines, the signature image is skipped if it is in
emf format. The preview images are also emf images. Hence, placeholder preview images are exported instead.
The DigitalSignatureOnly mode generates corrupted workbooks if .NET Core 2.x framework is used. The
workaround is to fix the generated workbook with zip archive libraries or tools (Do NOT use
System.IO.Packaging.Package or System.IO.Compression.ZipArchive, because this problem is caused by these
classes). However, this issue does not exist on .NET Framework or .NET Core 3.x .

Formulas
GcExcel .NET provides you with the ability to create and use formulas to carry out complex calculations on numerical data
residing in cells or a range of cells. You can also use some built-in functions and operators to generate formulas and
calculate values in cells. Formulas are written as algebraic expressions, statements, or equations that start with an
"=" (equal to) sign. The computation of a formula always begins from left and extends towards the right as per the
operator precedence. In case you want to modify the order of computation, you can enclose some specific portions within
the formula in parentheses.

Shared below is the descending order of operations for GcExcel .NET formulas with the first one holding the maximum
precedence and last one holding the minimum precedence.

1. Parentheses evaluation of expressions
2. Range evaluation
3. Evaluation of spaces within the expression.

Documents for Excel, .NET Edition 124

Copyright © 2021 GrapeCity, Inc. All rights reserved.

4. Evaluation of commas within the expression
5. Evaluation of variables with negation sign (-)
6. Conversion of percentages(%)
7. Evaluation of exponents (with ^ sign)
8. Multiplication and Division operators (hold equal precedence).
9. Addition and Subtraction operators (hold equal precedence).

10. Evaluation of text operators
11. Evaluation of comparison operators (=,<>,<=,>=)

In GcExcel .NET, managing formulas involves the following tasks.

Formula Parser
Formula Functions
Set Formula to Range
Set Table Formula
Set Array Formula
Precedents and Dependents
Iterative Calculation
Cross Workbook Formula

Formula Parser
GcExcel provides GrapeCity.Documents.Excel.Expressions library which allows you to parse formula expressions.
The formula expressions are exposed at semantic model level so that you can create, visit and modify the formulas by
using syntax tree. The FormulaSyntaxTree class represents a formula and is the entry point for formula expressions API.

Syntax Tree

The syntax tree represents semantic model of formulas. The Parse method of FormulaSyntaxTree class can be used
to get syntax tree from text. However, the text should not start with "=" and should not be surrounded with "{= }".
The Root property of FormulaSyntaxTree class can be used to get the root element of syntax tree. An empty syntax tree
can be created by using FormulaSyntaxTree constructor.

Refer to the following example code to generate a formula with syntax tree.

C#

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

// Build syntax tree
var multiply = new OperatorNode(OperatorKind.Multiply);
var a1 = new Reference
{
 Row = 0,
 Column = 0
};
var a2 = new Reference
{
 Row = 1,

Documents for Excel, .NET Edition 125

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 Column = 0
};
multiply.Children.Add(new ReferenceNode(a1));
multiply.Children.Add(new ReferenceNode(a2));

var tree = new FormulaSyntaxTree { Root = multiply };

// Generates A1*A2
workbook.ActiveSheet.Range["A1"].Value = "'=" + tree.ToString();

//save to an excel file
workbook.Save("generateformula.xlsx");

Syntax Node

The SyntaxNode class represents a node in the syntax tree. The Children property can be used to get children of a non-
terminal node. If the type of syntax node is a terminal node, then this collection is read-only. Similar to syntax tree, the
Parse method of SyntaxNode class can be used get syntax node from text. An empty syntax node can be created by
using SyntaxNode constructor.

Refer to the following example code to parse formula, modify the syntax tree by replacing the child of syntax node and
convert it to a string.

C#

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

var originalFormula = @"LET(AppUpTime,NOW()-DATE(2020,4,17)+366, YEAR(AppUpTime)-1900-1
& "" years""";

// Replace NOW() with fixed date

// Get syntax tree
var syntaxTree = FormulaSyntaxTree.Parse(originalFormula);

// Find
var nowFunction = new FunctionNode("NOW");

// Replacement
var valentine2021 = new FunctionNode("DATE");
valentine2021.Children.Add(new NumberNode(2021));
valentine2021.Children.Add(new NumberNode(2));
valentine2021.Children.Add(new NumberNode(14));

// Find and replace
void replaceNode(SyntaxNode lookIn, SyntaxNode find, SyntaxNode replacement)
{
 var children = lookIn.Children;

Documents for Excel, .NET Edition 126

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 for (var i = 0; i < children.Count; i++)
 {
 var child = children[i];
 if (child.Equals(find))
 {
 children[i] = replacement;
 }
 else
 {
 replaceNode(child, find, replacement);
 }
 }
}

replaceNode(syntaxTree.Root, nowFunction, valentine2021);

// Output original and replaced
var sheet1 = workbook.ActiveSheet;
sheet1.Range["A1"].Value = "Original";
sheet1.Range["A2"].Value = "'=" + originalFormula.ToString();
sheet1.Range["A3"].Value = "Replaced";
sheet1.Range["A4"].Value = "'=" + syntaxTree.ToString();

// Arrange
sheet1.Range["A:A"].EntireColumn.AutoFit();

//save to an excel file
workbook.Save("modifyformula.xlsx");

Parse and Unparse Options

The ParseContext and UnparseContext classes contain options for converting strings to FormulaSyntaxTree and vice
versa respectively. The BaseRow and BaseColumn properties can be used to specify the location of formula and IsR1C1
property can be used to specify the reference style.

Refer to the following example code to specify base row, base column and R1C1 reference style in options.

C#

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

// Convert R1C1 to A1
var r1c1Formula = "R1C:R8C[4]*9";
// At H2
var formulaRow = 1;
var formulaColumn = 7;

Documents for Excel, .NET Edition 127

Copyright © 2021 GrapeCity, Inc. All rights reserved.

// Parse
var r1c1Option = new ParseContext { IsR1C1 = true };
var syntaxTree = FormulaSyntaxTree.Parse(r1c1Formula, r1c1Option);

// ToString
// Specify BaseRow and BaseColumn in a1Option.
// Because row and column are absolute index in A1 format.
var a1Option = new UnParseContext
{
 BaseColumn = formulaColumn,
 BaseRow = formulaRow
};
var converted = syntaxTree.ToString(a1Option);

// Output
var sheet1 = workbook.ActiveSheet;
sheet1.Range["A1"].Value = "Original formula (at H2)";
sheet1.Range["A2"].Value = "'=" + r1c1Formula.ToString();
sheet1.Range["A3"].Value = "Converted";
sheet1.Range["A4"].Value = "'=" + converted.ToString();

// Arrange
sheet1.Range["A:A"].EntireColumn.AutoFit();

//save to an excel file
workbook.Save("parseandformatoptions.xlsx");

Refer to the following example code to parse formula and then print the syntax tree.

C#

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

const string Formula = "RAND()>0.5+0.001";

// Get syntax tree
var syntaxTree = FormulaSyntaxTree.Parse(Formula);

// Flatten nodes
var displayItems = new List<(string TypeName, int IndentLevel, string Content)>();

void flatten(SyntaxNode node, int level)
{
 displayItems.Add((node.GetType().Name, level, node.ToString()));
 foreach (var child in node.Children)
 {
 flatten(child, level + 1);

Documents for Excel, .NET Edition 128

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 }
}

flatten(syntaxTree.Root, 0);

// Output
var sheet1 = workbook.Worksheets["Sheet1"];
sheet1.ShowRowOutline = false;
sheet1.OutlineColumn.ColumnIndex = 1;
sheet1.OutlineColumn.CollapseIndicator = new
ImageSource(GetResourceStream("decreaseIndicator.png"), ImageType.PNG);
sheet1.OutlineColumn.ExpandIndicator = new
ImageSource(GetResourceStream("increaseIndicator.png"), ImageType.PNG);

// Header
sheet1.Range["A1"].Value = "Formula";
sheet1.Range["B1"].Value = "Syntax node";
sheet1.Range["C1"].Value = "Part";

// Values
sheet1.Range["A2"].Value = "'=" + Formula;
for (var i = 0; i < displayItems.Count; i++)
{
 var item = displayItems[i];
 var text = "'" + item.TypeName;

 sheet1.Range[i + 1, 1].Value = text;
 sheet1.Range[i + 1, 1].IndentLevel = item.IndentLevel;
 sheet1.Range[i + 1, 2].Value = "'" + item.Content;
}

// Arrange
sheet1.Range["A:C"].EntireColumn.AutoFit();
sheet1.Range["B:B"].EntireColumn.ColumnWidthInPixel += 40;

//save to an excel file
workbook.Save("printformulasyntax.xlsx");

Other Classes in GrapeCity.Documents.Excel.Expressions Library

The ReferenceNode class represents a reference expression in the syntax tree.

The Reference class represents a range reference in formula. The reference can be across a cell, range, cross-worksheet,
cross-worksheet 3D or cross-workbook.

Note: If a row or column index is relative, BaseRow or BaseColumn properties should be used to convert to
absolute index.

The WorkbookReference class is an immutable class which represents a reference to an external workbook by name or

Documents for Excel, .NET Edition 129

Copyright © 2021 GrapeCity, Inc. All rights reserved.

local file path. If the workbook reference is from file path, the BaseDirectory property contains the directory information.

Note: The path separator is platform specific and affects the result of workbook reference. For example, 'C:\Temp\
[Book1.xlsx]Sheet1'!A2 is a valid reference on Windows but invalid on Linux.

For example, the parsed object for a workbook referenced by name: [Book1]Sheet1!A2 will look like below:

C#

new ReferenceNode(
 new Reference {
 Workbook=WorkbookReference.FromName("Book1"),
 WorksheetName="Sheet1",
 Row=1,
 Column=0
 }
);

The parsed object for a workbook referenced by file path: 'C:\Temp\[Book1.xlsx]Sheet1'!A2 will look like below:

C#

new ReferenceNode(
 new Reference {
 Workbook=WorkbookReference.FromFilePath(@"C:\Temp\Book1.xlsx"),
 WorksheetName="Sheet1",
 Row=1,
 Column=0
 }
)

The FunctionNode class represents a function invocation expression in the syntax tree.

For example, the parsed object for Excel formula: COUNTIF(A:A,"*?") will look like below:

C#

new FunctionNode("COUNTIF") {
 Children = {
 new ReferenceNode(
 new Reference {
 HasRow=false, LastColumn=0
 }
),
 new TextNode("*?")
 }
};

The NameNode class represents the name in a syntax tree.

For example, the parsed object for a workbook referenced by name: '[BuildingSales]JanIn2021'!RawData will look like

Documents for Excel, .NET Edition 130

Copyright © 2021 GrapeCity, Inc. All rights reserved.

below:

C#

new NameNode("RawData", WorkbookReference.FromName("BuildingSales"), "JanIn2021", null);

The parsed object for a workbook referenced by file path: 'E:\[BuildingSales.xlsx]JanIn2021'!RawData will look like below:

C#

new NameNode("RawData", WorkbookReference.FromFilePath(@"E:\BuildingSales.xlsx"),
"JanIn2021", null);

The ErrorNode class represents an error literal node in the syntax tree. The following error types are not supported:

#BLOCKED!
#CALC!
#CONNECT!
#FIELD!
#SPILL!
#UNKNOWN!
#REF! error is parsed to ReferenceNode

The ArrayNode class represents an array literal in the syntax tree. There are following array constraints:

The length of array must be > 0
Elements can be Double, String, Boolean or CalcError. Primitive number types are converted to double implicitly.
The lower bound of each ranks must be 0
The array and Elements can't be null

To know more about other classes, please refer GrapeCity.Documents.Excel.Expressions<link> API documentation.

Limitations

Dynamic array formulas are not supported.
GetHashCode method of FormulaSyntaxTree and SyntaxNode class are not supported. They return constant values
because all fields are mutable.
GcExcel does not support resolving workbook index defined in OpenXML or JSON file storage. They are treated as
workbook reference by name.

Formula Functions
GcExcel.NET provides support for the following built-in functions, listed alphabetically.

Function Name Function Category Function Description

ABS Math and
Trigonometry

Returns the absolute value of a number.

ACCRINT Financial Returns the accrued interest for a security that pays periodic interest.

ACCRINTM Financial Returns the accrued interest for a security that pays interest at maturity.

Documents for Excel, .NET Edition 131

Copyright © 2021 GrapeCity, Inc. All rights reserved.

ACOS Math and
Trigonometry

Returns the arccosine of a number.

ACOSH Math and
Trigonometry

Returns the inverse hyperbolic cosine of a number.

ACOT Math and
Trigonometry

Returns the arccotangent of a number.

ACOTH Math and
Trigonometry

Returns the hyperbolic arccotangent of a number.

ADDRESS Lookup and
Reference

Returns a reference as text to a single cell in a worksheet.

AMORDEGRC Financial Returns the depreciation for each accounting period by using a
depreciation coefficient.

AMORLINC Financial Returns the depreciation for each accounting period.

AND Logical Returns TRUE if all of its arguments are TRUE.

ARABIC Math and
Trigonometry

Converts a Roman number to Arabic, as a number.

AREAS Lookup and
Reference

Returns the number of areas in a reference.

ASIN Math and
Trigonometry

Returns the arcsine of a number.

ASINH Math and
Trigonometry

Returns the inverse hyperbolic sine of a number.

ATAN Math and
Trigonometry

Returns the arctangent of a number.

ATAN2 Math and
Trigonometry

Returns the arctangent from x- and y-coordinates.

ATANH Math and
Trigonometry

Returns the inverse hyperbolic tangent of a number.

AVEDEV Statistical Returns the average of the absolute deviations of data points from their
mean.

AVERAGE Statistical Returns the average of its arguments.

AVERAGEA Statistical Returns the average of its arguments, including numbers, text, and
logical values.

AVERAGEIF Statistical Returns the average (arithmetic mean) of all the cells in a range that
meet a given criteria.

AVERAGEIFS Statistical Returns the average (arithmetic mean) of all cells that meet multiple
criteria.

BAHTTEXT Text Converts a number to text, using the ß (baht) currency format.

Documents for Excel, .NET Edition 132

Copyright © 2021 GrapeCity, Inc. All rights reserved.

BASE Math and
Trigonometry

Converts a number into a text representation with the given radix
(base).

BESSELI Engineering Returns the modified Bessel function In(x).

BESSELJ Engineering Returns the Bessel function Jn(x).

BESSELK Engineering Returns the modified Bessel function Kn(x).

BESSELY Engineering Returns the Bessel function Yn(x).

BETA.DIST Statistical Returns the beta cumulative distribution function.

BETA.INV Statistical Returns the inverse of the cumulative distribution function for a
specified beta distribution.

BETADIST Compatibility Returns the beta cumulative distribution function.

BETAINV Compatibility Returns the inverse of the cumulative distribution function for a
specified beta distribution.

BIN2DEC Engineering Converts a binary number to decimal.

BIN2HEX Engineering Converts a binary number to hexadecimal.

BIN2OCT Engineering Converts a binary number to octal.

BINOM.DIST Statistical Returns the individual term binomial distribution probability.

BINOM.DIST.RANGE Statistical Returns the probability of a trial result using a binomial distribution.

BINOM.INV Statistical Returns the smallest value for which the cumulative binomial
distribution is less than or equal to a criterion value.

BINOMDIST Compatibility Returns the individual term binomial distribution probability.

BITAND Engineering Returns a 'Bitwise And' of two numbers.

BITLSHIFT Engineering Returns a value number shifted left by shift_amount bits.

BITOR Engineering Returns a bitwise OR of 2 numbers.

BITRSHIFT Engineering Returns a value number shifted right by shift_amount bits.

BITXOR Engineering Returns a bitwise 'Exclusive Or' of two numbers.

CEILING Math and
Trigonometry

Rounds a number to the nearest integer or to the nearest multiple of
significance.

CEILING.MATH Math and
Trigonometry

Rounds a number up, to the nearest integer or to the nearest multiple
of significance.

CELL Information Returns information about the formatting, location, or contents of a
cell.

CHAR Text Returns the character specified by the code number.

CHIDIST Compatibility Returns the one-tailed probability of the chi-squared distribution.

CHIINV Compatibility Returns the inverse of the one-tailed probability of the chi-squared

Documents for Excel, .NET Edition 133

Copyright © 2021 GrapeCity, Inc. All rights reserved.

distribution.

CHISQ.DIST Statistical Returns the cumulative beta probability density function.

CHISQ.DIST.RT Statistical Returns the one-tailed probability of the chi-squared distribution.

CHISQ.INV Statistical Returns the cumulative beta probability density function.

CHISQ.INV.RT Statistical Returns the inverse of the one-tailed probability of the chi-squared
distribution.

CHISQ.TEST Statistical Returns the test for independence.

CHITEST Compatibility Returns the test for independence.

CHOOSE Lookup and reference Chooses a value from a list of values.

CLEAN Text Removes all nonprintable characters from text.

CODE Text Returns a numeric code for the first character in a text string.

COLUMN Lookup and reference Returns the column number of a reference.

COLUMNS Lookup and reference Returns the number of columns in a reference.

COMBIN Math and
trigonometry

Returns the number of combinations for a given number of objects.

COMBINA Math and
trigonometry

Returns the number of combinations for a specified number of
items including the repetitions.

COMPLEX Engineering Converts real and imaginary coefficients into a complex number.

CONCAT Text Combines the text from multiple ranges and/or strings, but it doesn't
provide the delimiter or IgnoreEmpty arguments.

CONCATENATE Text Joins several text items into one text item.

CONFIDENCE Compatibility Returns the confidence interval for a population mean.

CONFIDENCE.NORM Statistical Returns the confidence interval for a population mean.

CONFIDENCE.T Statistical Returns the confidence interval for a population mean, using a
Student's t distribution.

CONVERT Engineering Converts a number from one measurement system to another.

CORREL Statistical Returns the correlation coefficient between two data sets.

COS Math and
trigonometry

Returns the cosine of a number.

COSH Math and
trigonometry

Returns the hyperbolic cosine of a number.

COT Math and
trigonometry

Returns the cotangent of an angle.

COTH Math and
trigonometry

Returns the hyperbolic cotangent of an angle.

Documents for Excel, .NET Edition 134

Copyright © 2021 GrapeCity, Inc. All rights reserved.

COUNT Statistical Counts how many numbers are in the list of arguments.

COUNTA Statistical Counts how many values are in the list of arguments.

COUNTBLANK Statistical Counts the number of blank cells within a range.

COUNTIF Statistical Counts the number of cells within a range that meet the given criteria.

COUNTIFS Statistical Counts the number of cells within a range that meet multiple criteria.

COUPDAYBS Financial Returns the number of days from the beginning of the coupon period
to the settlement date.

COUPDAYS Financial Returns the number of days in the coupon period that contains the
settlement date.

COUPDAYSNC Financial Returns the number of days in the coupon period that contains the
settlement date.

COUPNCD Financial Returns the next coupon date after the settlement date.

COUPNUM Financial Returns the number of coupons payable between the settlement date
and maturity date.

COUPPCD Financial Returns the previous coupon date before the settlement date.

COVAR Compatibility Returns covariance, the average of the products of paired deviations.

COVARIANCE.P Statistical Returns covariance, the average of the products of paired deviations.

COVARIANCE.S Statistical Returns the sample covariance, the average of the products deviations
for each data point pair in two data sets.

CRITBINOM Compatibility Returns the smallest value for which the cumulative binomial
distribution is less than or equal to a criterion value.

CSC Math and
trigonometry

Returns the cosecant of an angle.

CSCH Math and
trigonometry

Returns the hyperbolic cosecant of an angle.

CUMIPMT Financial Returns the cumulative interest paid between two periods.

CUMPRINC Financial Returns the cumulative principal paid on a loan between two periods.

DATE Date and time Returns the serial number of a particular date.

DATEDIF Date and time Calculates the number of days, months, or years between two dates.
This function is useful in formulas where you need to calculate an age.

DATEVALUE Date and time Converts a date in the form of text to a serial number.

DAVERAGE Database Returns the average of selected database entries.

DAY Date and time Converts a serial number to a day of the month.

DAYS Date and time Returns the number of days between two dates.

DAYS360 Date and time Calculates the number of days between two dates based on a 360-day

Documents for Excel, .NET Edition 135

Copyright © 2021 GrapeCity, Inc. All rights reserved.

year.

DB Financial Returns the depreciation of an asset for a specified period by using the
fixed-declining balance method.

DCOUNT Database Changes half-width (single-byte) English letters or katakana within a
character string to full-width (double-byte) characters.

DCOUNTA Database Counts nonblank cells in a database.

DDB Financial Returns the depreciation of an asset for a specified period by using the
double-declining balance method or some other method that you
specify.

DEC2BIN Engineering Converts a decimal number to binary.

DEC2HEX Engineering Converts a decimal number to hexadecimal.

DEC2OCT Engineering Converts a decimal number to octal.

DECIMAL Math and
trigonometry

Converts a text representation of a number in a given base into a
decimal number.

DEGREES Math and
trigonometry

Converts radians to degrees.

DELTA Engineering Tests whether two values are equal.

DEVSQ Statistical Returns the sum of squares of deviations.

DGET Database Extracts from a database a single record that matches the specified
criteria.

DISC Financial Returns the discount rate for a security.

DMAX Database Returns the maximum value from selected database entries.

DMIN Database Returns the minimum value from selected database entries.

DOLLAR Text Converts a number to text, using the $ (dollar) currency format.

DOLLARDE Financial Converts a dollar price, expressed as a fraction, into a dollar price,
expressed as a decimal number.

DOLLARFR Financial Converts a dollar price, expressed as a decimal number, into a dollar
price, expressed as a fraction.

DPRODUCT Database Multiplies the values in a particular field of records that match the
criteria in a database.

DSTDEV Database Estimates the standard deviation based on a sample of selected
database entries.

DSTDEVP Database Calculates the standard deviation based on the entire population of
selected database entries.

DSUM Database Adds the numbers in the field column of records in the database that
match the criteria.

Documents for Excel, .NET Edition 136

Copyright © 2021 GrapeCity, Inc. All rights reserved.

DURATION Financial Returns the annual duration of a security with periodic interest
payments.

DVAR Database Estimates variance based on a sample from selected database entries.

DVARP Database Calculates variance based on the entire population of selected database
entries.

EDATE Date and time Returns the serial number of the date that is the indicated number of
months before or after the start date.

EFFECT Financial Returns the effective annual interest rate.

ENCODEURL Web Returns a URL-encoded string.

EOMONTH Date and time Returns the serial number of the last day of the month before or after a
specified number of months.

ERF Engineering Returns the error function.

ERF.PRECISE Engineering Returns the error function.

ERFC Engineering Returns the complementary error function.

ERFC.PRECISE Engineering Returns the complementary ERF function integrated between x and
infinity.

ERROR.TYPE Information Returns a number corresponding to an error type.

EUROCONVERT Add-in and
Automation

Converts a number to euros, converts a number from euros to a euro
member currency, or converts a number from one euro member
currency to another by using the euro as an intermediary
(triangulation).

EVEN Math and
Trigonometry

Rounds a number up to the nearest even integer.

EXACT Text Checks to see if two text values are identical.

EXP Math and
Trigonometry

Returns e raised to the power of a given number.

EXPON.DIST Statistical Returns the exponential distribution.

EXPONDIST Compatibility Returns the exponential distribution.

F.DIST Statistical Returns the F probability distribution

F.DIST.RT Statistical Returns the F probability distribution

F.INV Statistical Returns the inverse of the F probability distribution.

F.INV.RT Statistical Returns the inverse of the F probability distribution.

F.TEST Statistical Returns the result of an F-test.

FACT Math and
trigonometry

Returns the factorial of a number.

FACTDOUBLE Math and Returns the double factorial of a number.

Documents for Excel, .NET Edition 137

Copyright © 2021 GrapeCity, Inc. All rights reserved.

trigonometry

FALSE Logical Returns the logical value FALSE.

FDIST Compatibility Returns the F probability distribution.

FIND Text Finds one text value within another (case-sensitive).

FINDBs Text Finds one text value within another (case-sensitive).

FINV Statistical Returns the inverse of the F probability distribution.

FISHER Statistical Returns the Fisher transformation.

FISHERINV Statistical Returns the inverse of the Fisher transformation.

FIXED Text Formats a number as text with a fixed number of decimals.

FLOOR Compatibility Rounds a number down, toward zero.

FLOOR.MATH Math and
trigonometry

Rounds a number down, to the nearest integer or to the nearest
multiple of significance.

FLOOR.PRECISE Math and
trigonometry

Rounds a number the nearest integer or to the nearest multiple of
significance. Regardless of the sign of the number, the number is
rounded up.

FORECAST Statistical Returns a value along a linear trend.

FORMULATEXT Lookup and reference Returns the formula at the given reference as text.

FREQUENCY Statistical Returns a frequency distribution as a vertical array.

FTEST Compatibility Returns the result of an F-test.

FV Financial Returns the future value of an investment.

FVSCHEDULE Financial Returns the future value of an initial principal after applying a series of
compound interest rates.

GAMMA Statistical Returns the Gamma function value.

GAMMA.DIST Statistical Returns the Gamma distribution.

GAMMA.INV Statistical Returns the inverse of the gamma cumulative distribution.

GAMMADIST Compatibility Returns the gamma distribution.

GAMMAINV Compatibility Returns the inverse of the gamma cumulative distribution.

GAMMALN Statistical Returns the natural logarithm of the gamma function, G(x).

GAMMALN.PRECISE Statistical Returns the natural logarithm of the gamma function, G(x).

GAUSS Statistical Returns 0.5 less than the standard normal cumulative distribution.

GCD Math and
trigonometry

Returns the greatest common divisor.

GEOMEAN Statistical Returns the geometric mean.

GESTEP Engineering Tests whether a number is greater than a threshold value.

Documents for Excel, .NET Edition 138

Copyright © 2021 GrapeCity, Inc. All rights reserved.

GROWTH Statistical Returns values along an exponential trend.

HARMEAN Statistical Returns the harmonic mean.

HEX2BIN Engineering Converts a hexadecimal number to binary.

HEX2DEC Engineering Converts a hexadecimal number to decimal.

HEX2OCT Engineering Converts a hexadecimal number to octal.

HLOOKUP Lookup and reference Looks in the top row of an array and returns the value of the indicated
cell.

HOUR Date and time Converts a serial number to an hour.

HYPERLINK Lookup and reference Creates a shortcut or jump that opens a document stored on a network
server, an intranet, or the Internet.

HYPGEOM.DIST Statistical Returns the hypergeometric distribution.

HYPGEOMDIST Compatibility Returns the hypergeometric distribution.

IF Logical Specifies a logical test to perform

IFERROR Logical Returns a value you specify if a formula evaluates to an error; otherwise,
returns the result of the formula.

IFNA Logical Returns the value you specify if the expression resolves to #N/A,
otherwise returns the result of the expression.

IFS Logical Checks whether one or more conditions are met and returns a value
that corresponds to the first TRUE condition..

IMABS Engineering Returns the absolute value (modulus) of a complex number.

IMAGINARY Engineering Returns the imaginary coefficient of a complex number.

IMARGUMENT Engineering Returns the argument theta, an angle expressed in radians.

IMCONJUGATE Engineering Returns the complex conjugate of a complex number.

IMCOS Engineering Returns the cosine of a complex number.

IMCOSH Engineering Returns the hyperbolic cosine of a complex number.

IMCOT Engineering Returns the cotangent of a complex number.

IMCSC Engineering Returns the cosecant of a complex number.

IMCSCH Engineering Returns the hyperbolic cosecant of a complex number.

IMDIV Engineering Returns the quotient of two complex numbers.

IMEXP Engineering Returns the exponential of a complex number.

IMLN Engineering Returns the natural logarithm of a complex number.

IMLOG10 Engineering Returns the base-10 logarithm of a complex number.

IMLOG2 Engineering Returns the base-2 logarithm of a complex number.

Documents for Excel, .NET Edition 139

Copyright © 2021 GrapeCity, Inc. All rights reserved.

IMPOWER Engineering Returns a complex number raised to an integer power.

IMPRODUCT Engineering Returns the product of complex numbers.

IMREAL Engineering Returns the real coefficient of a complex number.

IMSEC Engineering Returns the secant of a complex number.

IMSECH Engineering Returns the hyperbolic secant of a complex number.

IMSIN Engineering Returns the sine of a complex number.

IMSINH Engineering Returns the hyperbolic sine of a complex number.

IMSQRT Engineering Returns the square root of a complex number.

IMSUB Engineering Returns the difference between two complex numbers.

IMSUM Engineering Returns the sum of complex numbers.

IMTAN Engineering Returns the tangent of a complex number.

INDEX Lookup and reference Uses an index to choose a value from a reference or array.

INDIRECT Lookup and reference Returns a reference indicated by a text value.

INT Math and
trigonometry

Rounds a number down to the nearest integer.

INTERCEPT Statistical Returns the intercept of the linear regression line.

INTRATE Financial Returns the interest rate for a fully invested security.

IPMT Financial Returns the interest payment for an investment for a given period.

IRR Financial Returns the internal rate of return for a series of cash flowsReturns the
internal rate of return for a series of cash flows.

ISBLANK Information Returns TRUE if the value is blank.

ISERR Information Returns TRUE if the value is any error value except #N/A.

ISERROR Information Returns TRUE if the value is any error value.

ISEVEN Information Returns TRUE if the number is even.

ISFORMULA Information Returns TRUE if there is a reference to a cell that contains a formula.

ISLOGICAL Information Returns TRUE if the value is a logical value.

ISNA Information Returns TRUE if the value is the #N/A error value.

ISNONTEXT Information Returns TRUE if the value is not text.

ISNUMBER Information Returns TRUE if the value is a number.

ISO.CEILING Math and
trigonometry

Returns a number that is rounded up to the nearest integer or to the
nearest multiple of significance.

ISODD Information Returns TRUE if the number is odd.

ISOWEEKNUM Date and time Returns the number of the ISO week number of the year for a given

Documents for Excel, .NET Edition 140

Copyright © 2021 GrapeCity, Inc. All rights reserved.

date.

ISPMT Financial Calculates the interest paid during a specific period of an investment.

ISREF Information Returns TRUE if the value is a reference.

ISTEXT Information Returns TRUE if the value is text.

KURT Statistical Returns TRUE if the value is text.

LARGE Statistical Returns the k-th largest value in a data set.

LCM Math and
trigonometry

Returns the least common multiple.

LEFT Text Returns the leftmost characters from a text value.

LEFTBs Text Returns the leftmost characters from a text value.

LEN Text Returns the number of characters in a text string.

LENBs Text Returns the number of characters in a text string.

LINEST Statistical Returns the parameters of a linear trend.

LN Math and
trigonometry

Returns the natural logarithm of a number.

LOG Math and
trigonometry

Returns the logarithm of a number to a specified base.

LOG10 Math and
trigonometry

Returns the base-10 logarithm of a number.

LOGEST Statistical Returns the parameters of an exponential trend.

LOGINV Compatibility Returns the inverse of the lognormal cumulative distribution.

LOGNORM.DIST Statistical Returns the cumulative lognormal distribution.

LOGNORM.INV Statistical Returns the inverse of the lognormal cumulative distribution.

LOGNORMDIST Compatibility Returns the cumulative lognormal distribution.

LOOKUP Lookup and reference Looks up values in a vector or array.

LOWER Text Converts text to lowercase.

MATCH Lookup and reference Looks up values in a reference or array.

MAX Statistical Returns the maximum value in a list of arguments.

MAXA Statistical Returns the maximum value in a list of arguments, including numbers,
text, and logical values.

MAXIFS Statistical Returns the maximum value among cells specified by a given set of
conditions or criteria.

MDETERM Math and
trigonometry

Returns the matrix determinant of an array.

Documents for Excel, .NET Edition 141

Copyright © 2021 GrapeCity, Inc. All rights reserved.

MDURATION Financial Returns the Macauley modified duration for a security with an assumed
par value of $100.

MEDIAN Statistical Returns the median of the given numbers.

MID Text Returns a specific number of characters from a text string starting at the
position you specify.

MIDBs Text Returns a specific number of characters from a text string starting at the
position you specify.

MIN Statistical Returns the minimum value in a list of arguments.

MINA Statistical Returns the smallest value in a list of arguments, including numbers,
text, and logical values.

MINIFS Statistical Returns the minimum value among cells specified by a given set of
conditions or criteria.

MINUTE Date and time Converts a serial number to a minute.

MINVERSE Math and
trigonometry

Returns the matrix inverse of an array.

MIRR Financial Returns the internal rate of return where positive and negative cash
flows are financed at different rates.

MMULT Math and
trigonometry

Returns the matrix product of two arrays.

MOD Math and
trigonometry

Returns the remainder from division.

MODE Compatibility Returns the most common value in a data set.

MODE.MULT Statistical Returns a vertical array of the most frequently occurring, or repetitive
values in an array or range of data.

MODE.SNGL Statistical Returns the most common value in a data set.

MONTH Date and time Converts a serial number to a month.

MROUND Math and
trigonometry

Returns a number rounded to the desired multiple.

MULTINOMIAL Math and
trigonometry

Returns the multinomial of a set of numbers.

MUNIT Math and
trigonometry

Returns the unit matrix or the specified dimension.

N Information Returns a value converted to a number.

NA Information Returns the error value #N/A.

NEGBINOM.DIST Statistical Returns the negative binomial distribution.

NEGBINOMDIST Compatibility Returns the negative binomial distribution.

Documents for Excel, .NET Edition 142

Copyright © 2021 GrapeCity, Inc. All rights reserved.

NETWORKDAYS Date and time Returns the number of whole workdays between two dates.

NETWORKDAYS.INTL Date and time Returns the number of whole workdays between two dates using
parameters to indicate which and how many days are weekend days.

NOMINAL Financial Returns the annual nominal interest rate.

NORM.DIST Statistical Returns the normal cumulative distribution.

NORM.INV Compatibility Returns the inverse of the normal cumulative distribution.

NORM.S.DIST Statistical Returns the standard normal cumulative distribution.

NORM.S.INV Statistical Returns the inverse of the standard normal cumulative distribution.

NORMDIST Compatibility Returns the normal cumulative distribution.

NORMINV Statistical Returns the inverse of the normal cumulative distribution.

NORMSDIST Compatibility Returns the standard normal cumulative distribution.

NORMSINV Compatibility Returns the inverse of the standard normal cumulative distribution.

NOT Logical Reverses the logic of its argument.

NOW Date and time Returns the serial number of the current date and time.

NPER Financial Returns the number of periods for an investment.

NPV Financial Returns the net present value of an investment based on a series of
periodic cash flows and a discount rate.

NUMBERVALUE Text Converts text to number in a locale-independent manner.

OCT2BIN Engineering Converts an octal number to binary.

OCT2DEC Engineering Converts an octal number to decimal.

OCT2HEX Engineering Converts an octal number to hexadecimal.

ODD Math and
trigonometry

Rounds a number up to the nearest odd integer.

ODDFPRICE Financial Returns the price per $100 face value of a security with an odd first
period.

ODDFYIELD Financial Returns the yield of a security with an odd first period.

ODDLPRICE Financial Returns the price per $100 face value of a security with an odd last
period.

ODDLYIELD Financial Returns the yield of a security with an odd last period.

OFFSET Lookup and reference Returns a reference offset from a given reference.

OR Logical Returns TRUE if any argument is TRUE.

PDURATION Financial Returns the number of periods required by an investment to reach a
specified value.

PEARSON Statistical Returns the Pearson product moment correlation coefficient.

Documents for Excel, .NET Edition 143

Copyright © 2021 GrapeCity, Inc. All rights reserved.

PERCENTILE Compatibility Returns the k-th percentile of values in a range.

PERCENTILE.EXC Statistical Returns the k-th percentile of values in a range, where k is in the range
0..1, exclusive.

PERCENTILE.INC Statistical Returns the k-th percentile of values in a range.

PERCENTRANK Compatibility Returns the percentage rank of a value in a data set.

PERCENTRANK.EXC Statistical Returns the rank of a value in a data set as a percentage (0..1, exclusive)
of the data set.

PERCENTRANK.INC Statistical Returns the percentage rank of a value in a data set.

PERMUT Statistical Returns the number of permutations for a given number of objects.

PERMUTATIONA Statistical Returns the number of permutations for a given number of objects
(with repetitions) that can be selected from the total objects.

PHI Statistical Returns the value of the density function for a standard normal
distribution.

PI Math and
trigonometry

Returns the value of pi.

PMT Financial Returns the periodic payment for an annuity.

POISSON Compatibility Returns the Poisson distribution.

POISSON.DIST Statistical Returns the Poisson distribution.

POWER Math and
trigonometry

Returns the result of a number raised to a power.

PPMT Financial Returns the payment on the principal for an investment for a given
period.

PRICE Financial Returns the price per $100 face value of a security that pays periodic
interest.

PRICEDISC Financial Returns the price per $100 face value of a discounted security.

PRICEMAT Financial Returns the price per $100 face value of a security that pays interest at
maturity.

PROB Statistical Returns the probability that values in a range are between two limits.

PRODUCT Math and
trigonometry

Multiplies its arguments.

PROPER Text Capitalizes the first letter in each word of a text value.

PV Financial Returns the present value of an investment.

QUARTILE Compatibility Returns the quartile of a data set.

QUARTILE.EXC Statistical Returns the quartile of the data set, based on percentile values from
0..1, exclusive.

QUARTILE.INC Statistical Returns the quartile of a data set.

Documents for Excel, .NET Edition 144

Copyright © 2021 GrapeCity, Inc. All rights reserved.

QUOTIENT Math and
trigonometry

Returns the integer portion of a division.

RADIANS Math and
trigonometry

Converts degrees to radians.

RAND Math and
trigonometry

Returns a random number between 0 and 1.

RANDBETWEEN Math and
trigonometry

Returns a random number between the numbers you specify.

RANK Compatibility Returns the rank of a number in a list of numbers.

RANK.AVG Statistical Returns the rank of a number in a list of numbers.

RANK.EQ Statistical Returns the rank of a number in a list of numbers.

RATE Financial Returns the interest rate per period of an annuity.

RECEIVED Financial Returns the amount received at maturity for a fully invested security.

REPLACE Text Replaces characters within text.

REPLACEBs Text Replaces characters within text

REPT Text Repeats text a given number of times.

RIGHT Text Returns the rightmost characters from a text value.

RIGHTBs Text Returns the rightmost characters from a text value.

ROMAN Math and
trigonometry

Converts an arabic numeral to roman, as text.

ROUND Math and
trigonometry

Rounds a number to a specified number of digits.

ROUNDDOWN Math and
trigonometry

Rounds a number down, toward zero.

ROUNDUP Math and
trigonometry

Rounds a number up, away from zero.

ROW Lookup and reference Returns the row number of a reference.

ROWS Lookup and reference Returns the number of rows in a reference.

RRI Financial Returns an equivalent interest rate for the growth of an investment.

RSQ Statistical Returns the square of the Pearson product moment correlation
coefficient.

SEARCH Text Finds one text value within another (not case-sensitive).

SEARCHBs Text Finds one text value within another (not case-sensitive).

SEC Math and
trigonometry

Returns the secant of an angle.

Documents for Excel, .NET Edition 145

Copyright © 2021 GrapeCity, Inc. All rights reserved.

SECH Math and
trigonometry

Returns the hyperbolic secant of an angle.

SECOND Date and Time Converts a serial number to a second.

SERIESSUM Math and
trigonometry

Returns the sum of a power series based on the formula.

SHEET Information Returns the sheet number of the referenced sheet.

SHEETS Information Returns the number of sheets in a reference.

SIGN Math and
trigonometry

Returns the sign of a number.

SIN Math and
trigonometry

Returns the sine of the given angle.

SINH Math and
trigonometry

Returns the hyperbolic sine of a number.

SKEW Statistical Returns the skewness of a distribution.

SKEW.P Statistical Returns the skewness of a distribution based on a population: a
characterization of the degree of asymmetry of a distribution around its
mean.

SLN Financial Returns the straight-line depreciation of an asset for one period.

SLOPE Statistical Returns the slope of the linear regression line.

SMALL Statistical Returns the k-th smallest value in a data set.

SQRT Math and
trigonometry

Returns a positive square root.

SQRTPI Math and
trigonometry

Returns the square root of (number * pi).

STANDARDIZE Statistical Returns a normalized value.

STDEV Compatibility Estimates standard deviation based on a sample.

STDEV.P Statistical Calculates standard deviation based on the entire population.

STDEV.S Statistical Estimates standard deviation based on a sample.

STDEVA Statistical Estimates standard deviation based on a sample, including numbers,
text, and logical values.

STDEVP Compatibility Calculates standard deviation based on the entire population.

STDEVPA Statistical Calculates standard deviation based on the entire population, including
numbers, text, and logical values.

STEYX Statistical Returns the standard error of the predicted y-value for each x in the
regression.

SUBSTITUTE Text Substitutes new text for old text in a text string.

Documents for Excel, .NET Edition 146

Copyright © 2021 GrapeCity, Inc. All rights reserved.

SUBTOTAL Math and
trigonometry

Returns a subtotal in a list or database.

SUM Math and
trigonometry

Adds its arguments.

SUMIF Math and
trigonometry

Adds the cells specified by a given criteria.

SUMIFS Math and
trigonometry

Adds the cells in a range that meet multiple criteria.

SUMPRODUCT Math and
trigonometry

Returns the sum of the products of corresponding array components.

SUMSQ Math and
trigonometry

Returns the sum of the squares of the arguments.

SUMX2MY2 Math and
trigonometry

Returns the sum of the difference of squares of corresponding values in
two arrays.

SUMX2PY2 Math and
trigonometry

Returns the sum of the sum of squares of corresponding values in two
arrays.

SUMXMY2 Math and
trigonometry

Returns the sum of squares of differences of corresponding values in
two arrays.

SWITCH Logical Evaluates an expression against a list of values and returns the result
corresponding to the first matching value. If there is no match, an
optional default value may be returned.

SYD Financial Returns the sum-of-years' digits depreciation of an asset for a specified
period.

T Text Converts its arguments to text.

T.DIST Statistical Returns the Percentage Points (probability) for the Student t-
distribution.

T.DIST.2T Statistical Returns the Percentage Points (probability) for the Student t-
distribution.

T.DIST.RT Statistical Returns the Student's t-distribution.

T.INV Statistical Returns the t-value of the Student's t-distribution as a function of the
probability and the degrees of freedom.

T.INV.2T Statistical Returns the inverse of the Student's t-distribution.

T.TEST Statistical Returns the probability associated with a Student's t-test.

TAN Math and
trigonometry

Returns the tangent of a number.

TANH Math and
trigonometry

Returns the hyperbolic tangent of a number.

TBILLEQ Financial Returns the bond-equivalent yield for a Treasury bill.

Documents for Excel, .NET Edition 147

Copyright © 2021 GrapeCity, Inc. All rights reserved.

TBILLPRICE Financial Returns the price per $100 face value for a Treasury bill.

TBILLYIELD Financial Returns the yield for a Treasury bill.

TDIST Compatibility Returns the Student's t-distribution.

TEXT Text Formats a number and converts it to text.

TEXTJOIN Text Combines the text from multiple ranges and/or strings, and includes a
delimiter you specify between each text value that will be combined. If
the delimiter is an empty text string, this function will effectively
concatenate the ranges.

TIME Date and time Returns the serial number of a particular time.

TIMEVALUE Date and time Converts a time in the form of text to a serial number.

TINV Compatibility Returns the inverse of the Student's t-distribution.

TODAY Date and time Returns the serial number of today's date.

TRANSPOSE Lookup and reference Returns the transpose of an array.

TREND Statistical Returns values along a linear trend.

TRIM Text Removes spaces from text.

TRIMMEAN Statistical Returns the mean of the interior of a data set.

TRUE Logical Returns the logical value TRUE.

TRUNC Math and
trigonometry

Truncates a number to an integer.

TTEST Compatibility Returns the probability associated with a Student's t-test.

TYPE Information Returns a number indicating the data type of a value.

UNICHAR Text Returns the Unicode character that is references by the given numeric
value.

UNICODE Text Returns the number (code point) that corresponds to the first character
of the text.

UPPER Text Converts text to uppercase.

VALUE Text Converts a text argument to a number.

VAR Compatibility Estimates variance based on a sample.

VAR.P Statistical Calculates variance based on the entire population.

VAR.S Statistical Estimates variance based on a sample.

VARA Statistical Estimates variance based on a sample, including numbers, text, and
logical values.

VARP Compatibility Calculates variance based on the entire population.

VARPA Statistical Calculates variance based on the entire population, including numbers,

Documents for Excel, .NET Edition 148

Copyright © 2021 GrapeCity, Inc. All rights reserved.

text, and logical values.

VDB Financial Returns the depreciation of an asset for a specified or partial period by
using a declining balance method.

VLOOKUP Lookup and reference Looks in the first column of an array and moves across the row to
return the value of a cell.

WEEKDAY Date and time Converts a serial number to a day of the week.

WEEKNUM Date and time Converts a serial number to a number representing where the week
falls numerically with a year.

WEIBULL Compatibility Calculates variance based on the entire population, including numbers,
text, and logical values.

WEIBULL.DIST Statistical Returns the Weibull distribution.

WORKDAY Date and time Returns the serial number of the date before or after a specified
number of workdays.

WORKDAY.INTL Date and time Returns the serial number of the date before or after a specified
number of workdays using parameters to indicate which and how many
days are weekend days.

XIRR Financial Returns the internal rate of return for a schedule of cash flows that is
not necessarily periodic.

XNPV Financial Returns the net present value for a schedule of cash flows that is not
necessarily periodic.

XOR Logical Returns a logical exclusive OR of all arguments.

YEAR Date and time Converts a serial number to a year.

YEARFRAC Date and time Returns the year fraction representing the number of whole days
between start_date and end_date.

YIELD Financial Returns the yield on a security that pays periodic interest.

YIELDDISC Financial Returns the annual yield for a discounted security; for example, a
Treasury bill.

YIELDMAT Financial Returns the annual yield of a security that pays interest at maturity.

Z.TEST Statistical Returns the one-tailed probability-value of a z-test.

ZTEST Compatibility Returns the one-tailed probability-value of a z-test.

Set Formula to Range
You can set formula to a cell range using the Formula property of the IRange interface.

Refer to the following example code to add custom names and set formula to a range in a worksheet.

Documents for Excel, .NET Edition 149

Copyright © 2021 GrapeCity, Inc. All rights reserved.

C#

// Add custom name and set formula to range
worksheet.Names.Add("test1", "=Sheet1!A1");
worksheet.Names.Add("test2", "=Sheet1!test1*2");

worksheet.Range["A1"].Value = 1;
//C6's value is 1.
worksheet.Range["C6"].Formula = "=test1";
//C7's value is 3.
worksheet.Range["C7"].Formula = "=test1 + test2";
//C8's value is 6.283185307
worksheet.Range["C8"].Formula = "=test2*PI()";

Note: The value calculated by the formula is stored in a cache. Users can verify the cached value by invoking
the Dirty method of the IRange interface. This method clears the cached value of the specified range and all the
ranges dependent on it, or the entire workbook.

Reference style

GcExcel .NET supports the RIC1 reference style to allow users to perform calculations in a much easier and quicker way. To
set reference style, you can use the Reference Style property of the IWorkbook interface.

Refer to the following example code to see how reference style can be set in a workbook.

C#

//set workbook's reference style to R1C1.
workbook.ReferenceStyle = ReferenceStyle.R1C1;

Defer the Update of Dirty State for Formula Cells

The value calculated by a formula is stored in cache first and the cached result is returned upon retrieving the cell value.
When a worksheet contains huge amount of data which depends on the result of formulas and the value of a cell is
changed, all the formula cells are recalculated and the cached values are stored again which could degrade the
performance of worksheet.

Hence, GcExcel provides DeferUpdateDirtyState property in Workbook class, which when set to true does not update
the dirty state of formula cells immediately when the value of a cell is changed.

Refer to the following example code to defer the update of dirty state for formula cells.

C#

Workbook wb = new Workbook();
wb.Open("formulas.xlsx");
//Defer the update of dirty cell state
wb.DeferUpdateDirtyState = true;
for (int i = 0; i < 1000; i++)
{
 wb.Worksheets[0].Range[i, 0].Value = i;

Documents for Excel, .NET Edition 150

Copyright © 2021 GrapeCity, Inc. All rights reserved.

}
//Resume the update of dirty cell state
wb.DeferUpdateDirtyState = false;

Limitation

When Workbook.DeferUpdateDirtyState is set to True, GcExcel does not update the dirty state of formula cells
immediately. At this point the referred ranges for other features (such as chart etc.) won't be dirty, so their caches would
not be updated. If you retrieve the state of such features, they may not be correct at that particular point of time.

Set Table Formula
Table formula refers to a formula that is used as a structured reference in the worksheet instead of using it as an explicit
cell reference. Structured reference in a table formula is the combination of table and column names in a spreadsheet with
syntax rules that must be applied while creating a table formula.

For instance, let us consider an example of a table formula in a spreadsheet.

The structured reference components in the above table formula are described below.

Components Description

Table Name References the table data, without any header or total rows. You can use a default table
name, such as Table1, or change it to use a custom name.
Example: DeptSales is a custom table name in the table formula.

Column Specifier Column specifiers use the names of the columns they represent. They reference column
data without any column header or total row. Column specifiers must be enclosed in []
square brackets when they are written in the table formula.
Example: [SalesAmount] and [ComAmt]

Item Specifier Refers to a specific portions of the table such as total row.

Documents for Excel, .NET Edition 151

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Example: [#Totals] and [#Data]

Table Specifier Represents the outer portions of the structured reference. Outer references follow table
names and are enclosed within the square brackets.
Example: [[#Totals],[SalesAmount]],[[#Data],[ComAmt]]

Structures Reference Represented by a string that begins with the table name and ends with the column
specifier.
Example: DeptSales[[#Totals],[SalesAmount]] and DeptSales[[#Data],[ComAmt]]

Reference operators

In GcExcel .NET, reference operators are used to combine column specifiers in a table formula.

Shared below is a table that describes the reference operators along with structured reference components and cell range
corresponding to the table formula.

Operators Description Example

:(colon) range
operator

All of the cells in two or more adjacent
columns.

=DeptSales[[SalesPerson]:[Region]]

,(comma) union
operator

A combination of two or more
columns.

=DeptSales[SalesAmount],DeptSales[ComAmt]

(space)
intersection
operator

The intersection of two or more
columns.

=DeptSales[[SalesPerson]:
[SalesAmount]]DeptSales[[Region]:[ComPct]]

Special item specifier

Special item specifier refers to a particular area in a table formula which is identified either with a # prefix or with an @
prefix.

GcExcel .NET supports the following types of special item specifiers:

Special Item Specifier Description

#All To the entire table including column headers, data and totals (if any).

#Data Only the data rows

#Headers Only the header rows

#Totals Only the total row. If there is none, it returns null.

#This Row Cells in the same row as the formula

@ Cells in the same row as the formula

Refer to the following example code to set table formula in your spreadsheets.

C#

// Define Data
worksheet.Range["A1:E3"].Value = new object[,]

Documents for Excel, .NET Edition 152

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 {
 {"SalesPerson", "Region", "SalesAmount", "ComPct", "ComAmt"},
 {"Joe", "North", 260, 0.10, null},
 {"Robert", "South", 660, 0.15, null},
 };

worksheet.Tables.Add(worksheet.Range["A1:E3"], true);
worksheet.Tables[0].Name = "DeptSales";
worksheet.Tables[0].Columns["ComPct"].DataBodyRange.NumberFormat = "0%";

//Use table formula in table range.
worksheet.Tables[0].Columns["ComAmt"].DataBodyRange.Formula = "=[@ComPct]*
[@SalesAmount]";

//Use table formula out of table range.
worksheet.Range["F2"].Formula = "=SUM(DeptSales[@SalesAmount])";
worksheet.Range["G2"].Formula = "=SUM(DeptSales[[#Data],[SalesAmount]])";
worksheet.Range["H2"].Formula = "=SUM(DeptSales[SalesAmount])";
worksheet.Range["I2"].Formula = "=SUM(DeptSales[@ComPct], DeptSales[@ComAmt])";

Set Array Formula
Array formula is a formula that can execute multiple calculations on individual cells or a range of cells to display a column
or a row of subtotals. The array formula can consist of array of row of values, column of values or simply a combination of
rows and columns of values that may return either multiple results or a single result.

Array formulas can be used to simplify the following tasks in a worksheet:

1. You can count the number of characters in a range of cells.
2. You can sum numeric values in cells that meet a specified criteria. For instance,the highest value in a range or

values that fall between an upper and lower boundary.
3. You can sum every nth value in a range of cell values in a spreadsheet.

In GcExcel .NET, you can use FormulaArray property of the IRange interface to set array formula for a range. In case,
you want to find out whether a range has array formula or not, you can use the HasArray property of the IRange
interface. In order to get an entire array if specified range is part of an array, you can use CurrentArray property.

Refer to the following example code to set array formula and get entire array:

C#

// Setting cell value using arrays
worksheet.Range["E4:J5"].Value = new object[,]
{
 {1, 2, 3},
 {4, 5, 6}
};

worksheet.Range["I6:J8"].Value = new object[,]
{

Documents for Excel, .NET Edition 153

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 {2, 2},
 {3, 3},
 {4, 4}
};
// To set array formula for range.
//O P Q
//2 4 #N/A
//12 15 #N/A
//#N/A #N/A #N/A
worksheet.Range["O9:Q11"].FormulaArray = "=E4:G5*I6:J8";

//O9's current array is "O9:Q11". Current array gets the entire array.
var currentarray = worksheet.Range["O9"].CurrentArray.ToString();

Precedents and Dependents
Sometimes, in worksheets containing lots of formulas, it becomes difficult to identify which cell values or ranges are taken
into consideration while doing calculations or how the result is calculated. Also, which cells are impacted if a cell value is
modified. Hence, comes the need for precedent and dependent cells or ranges. GcExcel library provides GetPrecedents
and GetDependents methods in the IRange interface, which help in identifying the precedent and dependent cells or
ranges in excel worksheets.

Precedents: Cells or ranges which are referred to, by the formulas in other cells
Dependents: Cells or ranges which contain formulas that refer to other cells

For example, the value in cell A1 =10, A2 = 20 and B1 = Sum (A1+A2), then A1 and A2 are the precedent cells of B1 which
are used for calculating the value of B1. Also, B1 is the dependent cell for A1 and A2 whose value is calculated based on
values of cell A1 and A2.

Precedents

Refer to the following example code to get the Precedent ranges in a worksheet.

C#

public void GetPrecedents()
{
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 // Set Formula in Cell E2
 worksheet.Range["E2"].Formula = "=sum(A1:A2, B4,C1:C3)";
 // Set Value of Cells
 worksheet.Range["A1"].Value = 1;
 worksheet.Range["A2"].Value = 2;
 worksheet.Range["B4"].Value = 3;
 worksheet.Range["C1"].Value = 4;

Documents for Excel, .NET Edition 154

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 worksheet.Range["C2"].Value = 5;
 worksheet.Range["C3"].Value = 6;

 // Get Precedent cells of Range E2
 foreach (var item in worksheet.Range["E2"].GetPrecedents())
 {
 item.Interior.Color = Color.Pink;
 }

 // Saving workbook to Xlsx
 workbook.Save(@"Precedents.xlsx", SaveFileFormat.Xlsx);

}

The below image shows the precedent ranges (highlighted in pink).

Dependents

Refer to the following example code to get dependent ranges in a worksheet.

C#

public void GetDependents()
{
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 // Set Value of Cell A1
 worksheet.Range["A1"].Value = 100;
 // Set Formula in Cell C1
 worksheet.Range["C1"].Formula = "=A1";
 // Set Formula in Range E1:E5
 worksheet.Range["E1:E5"].Formula = "=A1";

 // Get Dependent cells of Range A1
 foreach (var item in worksheet.Range["A1"].GetDependents())

Documents for Excel, .NET Edition 155

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 {
 item.Interior.Color = Color.LightGreen;
 }

 // Saving workbook to Xlsx
 workbook.Save(@"Dependents.xlsx", SaveFileFormat.Xlsx);
}

The below image shows the dependent ranges (highlighted in green).

All Precedents

Often multiple precedent ranges are used to calculate cell formula. Refer to the following example code to get all the
precedent ranges in a worksheet.

C#

public void GetAllPrecedents()
{
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 // Set Formula in Cell E2
 worksheet.Range["E2"].Formula = "=sum(C1:C2)";
 // Set Formula in Cell C1
 worksheet.Range["C1"].Formula = "=B1";
 // Set Formula in Cell B1
 worksheet.Range["B1"].Formula = "=sum(A1:A2)";
 // Set Value of Cells
 worksheet.Range["A1"].Value = 1;
 worksheet.Range["A2"].Value = 2;
 worksheet.Range["C2"].Value = 3;

 // Get Precedent cells of Range E2
 List<IRange> list = new List<IRange>();
 foreach (var item in worksheet.Range["E2"].GetPrecedents())

Documents for Excel, .NET Edition 156

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 {
 list.Add(item);
 }

 while (list.Count > 0)
 {
 var temp = list;
 list = new List<IRange>();
 foreach (var item in temp)
 {
 for (int i = 0; i < item.RowCount; i++)
 {
 for (int j = 0; j < item.ColumnCount; j++)
 {
 var dependents = item.Cells[i, j].GetPrecedents();
 if (dependents.Count == 0)
 {
 item.Cells[i, j].Interior.Color = Color.SkyBlue;
 }
 else
 {
 item.Cells[i, j].Interior.Color = Color.LightGreen;
 list.AddRange(dependents);
 }
 }
 }
 }
 }

 // Saving workbook to Xlsx
 workbook.Save(@"GetAllPrecedents.xlsx", SaveFileFormat.Xlsx);
}

The below image shows all the precedent ranges (highlighted in blue and green).

Iterative Calculation
Iterative calculation is performed to repeatedly calculate a function until a specific numeric condition is met. GcExcel
allows you to enable and perform iterative calculations by using EnableIterativeCalculation property of

Documents for Excel, .NET Edition 157

Copyright © 2021 GrapeCity, Inc. All rights reserved.

IFormulaOptions interface. Additionally, you can also set or retrieve the following:

Maximum number of iterations by using MaximumIterations property
Maximum difference between values of iterative formulas by using MaximumChange property

For example, if MaximumIterations is set to 10 and MaximumChange is set to 0.001, GcExcel will stop calculating either
after 10 calculations, or when there is a difference of less than 0.001 between the results.

Refer to the following example code to perform iterative calculation in a worksheet by performing 10 iterations.

C#

//create a new workbook
Workbook workbook = new Workbook();

//enable iterative calculation
workbook.Options.Formulas.EnableIterativeCalculation = true;
workbook.Options.Formulas.MaximumIterations = 10;
var worksheet = workbook.Worksheets[0];
worksheet.Range["A1"].Formula = "=B1 + 1";
worksheet.Range["B1"].Formula = "=A1 + 1";

Console.WriteLine("A1:" + worksheet.Range["A1"].Value.ToString());
Console.WriteLine("B1:" + worksheet.Range["B1"].Value.ToString());

workbook.Save("IterativeCalculation.xlsx");

Cross Workbook Formula
Cross workbook formulas allow you to refer the data in other workbooks by creating formulas referring to external
workbooks. For example, if there are 5 workbooks for different subjects, you can add the marks of all five subjects in a
worksheet by using cross workbook formulas.

GcExcel provides GetExcelLinkSources property which can be used to get the names of linked excel workbooks and
UpdateExcelLinks method to update the caches of excel links.

Refer to the following example code to use cross workbook formula and update the excel links.

C#

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

workbook.Worksheets[0].Range["B1"].Formula = @"='D:\[A.xlsx]Sheet1'!A1";
// create a new workbook as the intance of external workbook.
var workbook2 = new GrapeCity.Documents.Excel.Workbook();
workbook2.Worksheets[0].Range["A1"].Value = "Hello, World!";

Documents for Excel, .NET Edition 158

Copyright © 2021 GrapeCity, Inc. All rights reserved.

workbook2.Worksheets[0].Range["A2"].Value = "Hello";
// update the caches of external workbook data.
foreach (var item in workbook.GetExcelLinkSources())
{
 workbook.UpdateExcelLink(item, workbook2);
}

//save to an excel file
workbook.Save("crossworkbookformula.xlsx");

Custom Functions
GcExcel provides support for adding custom functions, thus enabling users to implement custom arithmetic logic to
spreadsheets. These functions run extremely fast, can make web service calls, look similar to the native Excel functions,
and can be used across all Excel platforms including major operating systems (Windows, Mac, Mobile OS and Office: both
online and offline).

For instance, you can use company’s proprietary functions, apply a nested formula with custom functions, or use a
combination of standard built-in functions in order to handle complex spreadsheet calculations.

To implement custom functions in GcExcel .NET, you need to create a derived class from the CustomFunction class
and declare the custom function in the new class along with the function name, return type, and parameters.

You can also use custom objects in custom functions as demonstrated by the last example in this topic. If one parameter
of overloaded Parameter method is set to FunctionValueType.Object and acceptCustomObjects is set toTrue, custom
objects can be used. Similarly, if the return type is FunctionValueType.Object, the formula can return custom objects.

Using Code

Step 1: Define a custom function
Step 2: Register the custom function in your worksheet using the AddCustomFunction() method
Step 3: Implement the custom function

Shared below are some examples of custom functions that can be created and used to perform complex calculation tasks:

Example 1: Conditional Sum Function

Refer to the following example code to create and use custom conditional sum function in your spreadsheet. This function
can sum cell values based on specific display format or style (like cells with interior color as red).

C#

// Step 1- Defining custom function: MyConditionalSum
// Creating a new class MyConditionalSumFunctionX by inheriting the CustomFunction class
public class MyConditionalSumFunctionX : CustomFunction
{
 public MyConditionalSumFunctionX() : base("MyConditionalSum",
FunctionValueType.Number, CreateParameters())
 {
 }

Documents for Excel, .NET Edition 159

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 private static Parameter[] CreateParameters()
 {
 Parameter[] parameters = new Parameter[254];
 for (int i = 0; i < 254; i++)
 {
 parameters[i] = new Parameter(FunctionValueType.Object, true);
 }
 return parameters;
 }
 public override object Evaluate(object[] arguments, ICalcContext context)
 {
 double sum = 0d;
 foreach (var argument in arguments)
 {
 foreach (var item in Enumerate(argument))
 {
 if (item is CalcError)
 {
 return item;
 }
 if (item is double)
 {
 sum += (double)item;
 }
 }
 }
 return sum;
 }
 private static IEnumerable<object> Enumerate(object obj)
 {
 if (obj is IEnumerable<object>)
 {
 foreach (var item in obj as IEnumerable<object>)
 {
 foreach (var item2 in Enumerate(item))
 {
 yield return item2;
 }
 }
 }
 else if (obj is object[,])
 {
 var array = obj as object[,];
 int rowCount = array.GetLength(0);
 int colCount = array.GetLength(1);
 for (int i = 0; i < rowCount; i++)
 {
 for (int j = 0; j < colCount; j++)

Documents for Excel, .NET Edition 160

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 {
 yield return array[i, j];
 }
 }
 }
 else if (obj is CalcReference)
 {
 foreach (var item in Enumerate(obj as CalcReference))
 {
 yield return item;
 }
 }
 yield return obj;
 }
 private static IEnumerable<object> Enumerate(CalcReference reference)
 {
 foreach (var range in reference.GetRanges())
 {
 int rowCount = range.Rows.Count;
 int colCount = range.Columns.Count;
 for (int i = 0; i < rowCount; i++)
 {
 for (int j = 0; j < colCount; j++)
 {
 if (range.Cells[i, j].DisplayFormat.Interior.Color ==
System.Drawing.Color.Red)
 {
 yield return range.Cells[i, j].Value;
 }
 }
 }
 }
 }
}

C#

// Step2: Register the custom function using AddCustomFunction() method
var workbook = new GrapeCity.Documents.Excel.Workbook();
GrapeCity.Documents.Excel.Workbook.AddCustomFunction(new MyConditionalSumFunctionX());
IWorksheet worksheet = workbook.Worksheets[0];

// Step3- Implement the Custom Function
worksheet.Range["A1:A10"].Value = new object[,] { { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6
}, { 7 }, { 8 }, { 9 }, { 10 } };
IFormatCondition cellValueRule =
worksheet.Range["A1:A10"].FormatConditions.Add(FormatConditionType.CellValue,
FormatConditionOperator.Greater, 5) as IFormatCondition;
cellValueRule.Interior.Color = System.Drawing.Color.Red;

Documents for Excel, .NET Edition 161

Copyright © 2021 GrapeCity, Inc. All rights reserved.

// Sum cells value which display format interior color are red.
worksheet.Range["C1"].Formula = "=MyConditionalSum(A1:A10)";
// Range["C1"]'s value is 40.
var result = worksheet.Range["C1"].Value;
// Display result in cell E2
worksheet.Range["E2"].Value = result;

Example 2: Custom Concatenation Function

Refer to the following example code to create and use custom concatenation function in your spreadsheet.

C#

// Step 1- Defining custom function: MyConcatenate
// Creating a new class MyConcatenateFunctionX by inheriting the CustomFunction class
public class MyConcatenateFunctionX : CustomFunction
{
 public MyConcatenateFunctionX() : base("MyConcatenate", FunctionValueType.Text,
CreateParameters())
 {
 }
 private static Parameter[] CreateParameters()
 {
 Parameter[] parameters = new Parameter[254];
 for (int i = 0; i < 254; i++)
 {
 parameters[i] = new Parameter(FunctionValueType.Variant);
 }
 return parameters;
 }
 public override object Evaluate(object[] arguments, ICalcContext context)
 {
 StringBuilder sb = new StringBuilder();
 string result = string.Empty;
 foreach (var argument in arguments)
 {
 if (argument is CalcError)
 {
 return argument;
 }
 if (argument is string || argument is double)
 {
 sb.Append(argument);
 }
 }
 return sb.ToString();
 }
}

Documents for Excel, .NET Edition 162

Copyright © 2021 GrapeCity, Inc. All rights reserved.

C#

// Step2: Register the custom function using AddCustomFunction() method
var workbook = new GrapeCity.Documents.Excel.Workbook();
GrapeCity.Documents.Excel.Workbook.AddCustomFunction(new MyConcatenateFunctionX());
IWorksheet worksheet = workbook.Worksheets[0];

// Step3- Implement the Custom Function
worksheet.Range["A1"].Formula = "=MyConcatenate(\"I\", \" \", \"work\", \" \", \"with\",
\" \", \"GcExcel\", \".\")";
worksheet.Range["A2"].Formula = "=MyConcatenate(A1, \"Documents.\")";
// Value of cell A1 is "I work with GcExcel."
var resultA1 = worksheet.Range["A1"].Value;
// Display result in cell C1
worksheet.Range["C1"].Value = resultA1;
// Value of cell A2 is "I work with GcExcel Documents."
var resultA2 = worksheet.Range["A2"].Value;
// Display result in cell C2
worksheet.Range["C2"].Value = resultA2;

Example 3: Merged Range Function

Refer to the following example code to create and use custom merged range function in your spreadsheet.

C#

// Step 1- Defining custom function: MyIsMergedRange
// Creating a new class MyIsMergedRangeFunctionX by inheriting the CustomFunction class
public class MyIsMergedRangeFunctionX : CustomFunction
{
 public MyIsMergedRangeFunctionX()
 : base("MyIsMergedRange", FunctionValueType.Boolean, new Parameter[] { new
Parameter(FunctionValueType.Object, true) })
 {
 }
 public override object Evaluate(object[] arguments, ICalcContext context)
 {
 if (arguments[0] is CalcReference)
 {
 IEnumerable<IRange> ranges = (arguments[0] as CalcReference).GetRanges();

 foreach (var range in ranges)
 {
 return range.MergeCells;
 }
 }
 return false;
 }
}

Documents for Excel, .NET Edition 163

Copyright © 2021 GrapeCity, Inc. All rights reserved.

C#

// Step2: Register the custom function using AddCustomFunction() method
var workbook = new GrapeCity.Documents.Excel.Workbook();
GrapeCity.Documents.Excel.Workbook.AddCustomFunction(new MyIsMergedRangeFunctionX());
IWorksheet worksheet = workbook.Worksheets[0];

// Step3- Implement the Custom Function
worksheet.Range["A1:B2"].Merge();
worksheet.Range["C1"].Formula = "=MyIsMergedRange(A1)";
worksheet.Range["C2"].Formula = "=MyIsMergedRange(H2)";
//A1 is a merged cell, Range["C1"]'s value is true.
var resultC1 = worksheet.Range["C1"].Value;
// Display result in cell D1
worksheet.Range["D1"].Value = resultC1;
//H2 is not a merged cell, Range["C2"]'s value is false.
var resultC2 = worksheet.Range["C2"].Value;
// Display result in cell D2
worksheet.Range["D2"].Value = resultC2;

Example 4: Error Detection Function

Refer to the following example code to create and use custom error detection function in your spreadsheet.

C#

// Step 1- Defining custom function: MyIsError
// Creating a new class MyIsErrorFunctionX by inheriting the CustomFunction class
public class MyIsErrorFunctionX : CustomFunction
 {
 public MyIsErrorFunctionX()
 : base("MyIsError", FunctionValueType.Boolean, new Parameter[] { new
Parameter(FunctionValueType.Variant) })
 {
 }
 public override object Evaluate(object[] arguments, ICalcContext context)
 {
 if (arguments[0] is CalcError)
 {
 if ((CalcError)arguments[0] != CalcError.None && (CalcError)arguments[0]
!= CalcError.GettingData)
 {
 return true;
 }
 else
 {
 return false;
 }
 }

Documents for Excel, .NET Edition 164

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 return false;
 }
 }

C#

// Step2: Register the custom function using AddCustomFunction() method
var workbook = new Workbook();
Workbook.AddCustomFunction(new MyIsErrorFunctionX());
IWorksheet worksheet = workbook.Worksheets[0];

// Step3: Implement the custom function
worksheet.Range["A1"].Value = CalcError.Num;
worksheet.Range["A2"].Value = 100;
worksheet.Range["B1"].Formula = "=MyIsError(A1)";
worksheet.Range["B2"].Formula = "=MyIsError(A2)";
// Range["B1"]'s value is true.
var resultB1 = worksheet.Range["B1"].Value;
// Display Result in cell C1
worksheet.Range["C1"].Value = resultB1;
// Range["B2"]'s value is false.
var resultB2 = worksheet.Range["B2"].Value;
// Display Result in cell C2
worksheet.Range["C2"].Value = resultB2;

Example 5: Greatest Common Division Function using Custom Objects

Refer to the following example code to create and use BigInteger function to calculate greatest common division.

C#

// Step 1.1- Defining custom function: BigIntegerMultiplyFunction
internal class BigIntegerMultiplyFunction : CustomFunction
{
public BigIntegerMultiplyFunction() : base("BIG.INTEGER.MULT", FunctionValueType.Object,
new[]
 {
 new Parameter(FunctionValueType.Text),
 new Parameter(FunctionValueType.Text)
 })
 {
 }

public override object Evaluate(object[] arguments, ICalcContext context)
{
 if (!(arguments[0] is string) || !(arguments[1] is string))
 {
 return CalcError.Value;

Documents for Excel, .NET Edition 165

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 }
 var leftNumber = (string)arguments[0];
 var rightNumber = (string)arguments[1];
 try
 {
 return BigInteger.Parse(leftNumber) * BigInteger.Parse(rightNumber);
 }
 catch (FormatException)
 {
 return CalcError.Value;
 }
 catch (ArgumentException)
 {
 return CalcError.Value;
 }
}

}
// Step 1.2- Defining custom function: BigIntegerPowFunction
internal class BigIntegerPowFunction : CustomFunction
{
public BigIntegerPowFunction() : base("BIG.INTEGER.POW", FunctionValueType.Object, new[]
{
 new Parameter(FunctionValueType.Text),
 new Parameter(FunctionValueType.Number)
 })
 {
 }

public override object Evaluate(object[] arguments, ICalcContext context)
{
 if (!(arguments[0] is string) || !(arguments[1] is double))
 {
 return CalcError.Value;
 }
 var number = (string)arguments[0];
 var exp = (double)arguments[1];
 if (exp > int.MaxValue || exp < int.MinValue)
 {
 return CalcError.Value;
 }
 var iExp = Convert.ToInt32(exp);
 try
 {
 return BigInteger.Pow(BigInteger.Parse(number), iExp);
 }
 catch (FormatException)
 {

Documents for Excel, .NET Edition 166

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 return CalcError.Value;
 }
 catch (ArgumentException)
 {
 return CalcError.Value;
 }
}
}
// Step 1.3- Defining custom function: GreatestCommonDivisionFunction
internal class GreatestCommonDivisionFunction : CustomFunction
{
public GreatestCommonDivisionFunction() : base("BIG.INTEGER.GCD",
FunctionValueType.Object, new[] {
 new Parameter(FunctionValueType.Object, false, true),
 new Parameter(FunctionValueType.Object, false, true)
 })
 {
 }

public override object Evaluate(object[] arguments, ICalcContext context)
{
 if (!(arguments[0] is BigInteger) || !(arguments[1] is BigInteger))
 {
 return CalcError.Value;
 }
 var leftNumber = (BigInteger)arguments[0];
 var rightNumber = (BigInteger)arguments[1];
 try
 {
 return BigInteger.GreatestCommonDivisor(leftNumber, rightNumber);
 }
 catch (ArgumentException)
 {
 return CalcError.Value;
 }

}
}

C#

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

try
{
 // Step2.1: Register the custom function using AddCustomFunction() method
 GrapeCity.Documents.Excel.Workbook.AddCustomFunction(new BigIntegerPowFunction());
}

Documents for Excel, .NET Edition 167

Copyright © 2021 GrapeCity, Inc. All rights reserved.

catch (Exception)
{
 // Function was added
} // End Try
try
{
 // Step2.2: Register the custom function using AddCustomFunction() method
 GrapeCity.Documents.Excel.Workbook.AddCustomFunction(new
BigIntegerMultiplyFunction());
}
catch (Exception)
{
 // Function was added
} // End Try
try
{
 // Step2.3: Register the custom function using AddCustomFunction() method
 GrapeCity.Documents.Excel.Workbook.AddCustomFunction(new
GreatestCommonDivisionFunction());
}
catch (Exception)
{
 // Function was added
} // End Try

// Use BigInteger to calculate results
IWorksheet worksheet = workbook.ActiveSheet;
// Step3- Implement the Custom Function
worksheet.Range["A1"].Value = "154382190 ^ 3 = ";
worksheet.Range["A2"].Value = "1643590 * 166935 = ";
worksheet.Range["A3"].Value = "Greatest common division = ";
worksheet.Range["B1"].Formula = "=BIG.INTEGER.POW(\"154382190\", 3)";
worksheet.Range["B2"].Formula = "=BIG.INTEGER.MULT(\"1643590\", \"166935\")";
worksheet.Range["B3"].Formula = "=BIG.INTEGER.GCD(B1,B2)";

// Arrange
worksheet.Columns[0].AutoFit();
worksheet.Columns[1].ColumnWidth = worksheet.Range["B1"].Text.Length + 1;

//save to a pdf file
workbook.Save("customobjectincustomfunction.pdf");

Shapes and Pictures
GcExcel .NET allows you to embed drawing objects like shapes and pictures on cells of a worksheet. You can work with
shape and picture by accessing the properties and methods of the IShape interface and the IShapes interface.

Documents for Excel, .NET Edition 168

Copyright © 2021 GrapeCity, Inc. All rights reserved.

With GcExcel library, you can create different shape types such as Connector, Shape and Picture.

Connector

A connector is used when you need to connect or disconnect two general shapes. In GcExcel, you can use the
BeginConnect method, EndConnect method, BeginDisconnect method and EndDisconnect method of the
IConnectorFormat interface to attach and detach the ends of the connector to other shapes.

Refer to the following example code to connect general shapes using the connector format.

C#

// To config the connector shape.
IShape shapeBegin = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 1, 1, 100, 100);
IShape endBegin = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 200, 200, 100,
100);
IShape connectorShape = worksheet.Shapes.AddConnector(ConnectorType.Straight, 1, 1, 101,
101);
connectorShape.Width = 10;
// To detach the ends of the connector to other shapes.
connectorShape.ConnectorFormat.BeginConnect(shapeBegin, 3);
connectorShape.ConnectorFormat.EndConnect(endBegin, 0);

Note: One of the limitations of using connector format is that you can add a connector to connect two general
shapes and export it but the connector will be shown only after you drag the shape to your spreadsheet.

Shape

A shape is a drawing object and a member of the Shapes collection. In GcExcel, the Shapes collection represents the
collection of shapes in a specified worksheet. All the drawing objects including chart, comment, picture, slicer, general
shape and shape group are defined as Shape.

A name can also be assigned to a shape, be it a chart, picture, connector or any autoshape, by using different
methods provided in IShapes interface. By assigning a name to a shape, it be directly accessed and its properties can be
modified rather than traversing through the list of all shapes.

Refer to the below example code to assign a name to an autoshape.

C#

Workbook workbook = new Workbook();
// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

//Create shape with custom name
IShape shape = worksheet.Shapes.AddShape("Balloon", AutoShapeType.Balloon, 50, 50, 100,
200);

//save to an excel file
workbook.Save("BalloonShape.xlsx");

Documents for Excel, .NET Edition 169

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Refer to the below example code to assign a name to a chart.

C#

 //create a new workbook
 Workbook workbook = new Workbook();

 IWorksheet worksheet = workbook.Worksheets[0];

 //set chart name
 IShape shape = worksheet.Shapes.AddChart("Area chart with custom name", ChartType.Area,
250, 20, 360, 230);
 worksheet.Range["A1:C13"].Value = new object[,] {
{ null, "Blue Series", "Orange Series" },
{ "Jan", 0, 59.1883603948205 },
{ "Feb", 44.6420211591501, 52.2280901938606 },
{ "Mar", 45.2174930051225, 49.8093056416248 },
{ "Apr", 62, 37.3065749226828 },
{ "May", 53, 34.4312192530766 },
{ "Jun", 31.8933622049831, 69.7834561753736 },
{ "Jul", 41.7930895085093, 63.9418103906982 },
{ "Aug", 73, 57.4049534494926 },
{ "Sep", 49.8773891668518, 33 },
{ "Oct", 50, 74 },
{ "Nov", 54.7658428630216, 22.9587876597096 },
{ "Dec", 32, 54 },
};

 //Get chart by name
 IShape areaChart = worksheet.Shapes["Area chart with custom name"];
 areaChart.Chart.SeriesCollection.Add(worksheet.Range["A1:C13"], RowCol.Columns);
 areaChart.Chart.ChartTitle.Text = "Area Chart";

 //save to an excel file
 workbook.Save("ChartName.xlsx");

Picture

You can insert pictures on cells of a spreadsheet by using the AddPicture method of the IShapes interface. The
IPictureFormat interface in GcExcel allows users to customize and format pictures while working in a spreadsheet.

Refer to the following example code when working with picture in GcExcel:

C#

// Add a picture
IShape picture = worksheet.Shapes.AddPicture(@"Images\flower.jpg", 480, 10, 100, 100);
// Fill the inserted picture
picture.Fill.Solid();
picture.Fill.Color.RGB = Color.AliceBlue;

Documents for Excel, .NET Edition 170

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//Customize the inserted picture
picture.PictureFormat.Crop.PictureWidth = 80;

Refer to the below example code to assign a name to a picture.

C#

Workbook workbook = new Workbook();
// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

//add picture with custom name
IShape shape = worksheet.Shapes.AddPicture("Custom Name to Image", "image.png", 10, 10,
250, 150);

//save to an excel file
workbook.Save("PictureName.xlsx");

Working with shapes and pictures in the GcExcel library involves the following tasks:

Customize Shape Format and Shape Text

Hyperlink on Shape

Group or Ungroup Shapes

Shape Adjustment

Background Image

Size and Position of Image

Image Transparency

Control Position of Overlapping Shapes

Note: GcExcel.NET also provides support for loading and saving GrapeCity SpreadJS JSON files with shapes. For more
information, refer to Import and Export JSON Stream.

Customize Shape Format and Shape Text
GcExcel not only allows you to add shapes and picture, the library also lets you customize shape formats and shape texts.
A user can enhance the look of a shape in the Excel file by changing fill color, formatting three-dimensional orientation
or adding lines around the shape.

Using GcExcel, a user can customize both the shape format and shape text.

Shape Format
In GcExcel, you can customize the shape format in three different ways. This includes setting the fill format for the inserted
shape using the properties and methods of the IFillFormat interface, configuring the shape's line using the properties
and methods of the ILineFormat interface and applying 3D formatting to the shape using the properties and methods of

Documents for Excel, .NET Edition 171

Copyright © 2021 GrapeCity, Inc. All rights reserved.

the IThreeDFormat interface.

Solid Fill

To format the shape with Solid fill, first you need to use the Solid method of the IFillFormat interface to specify the
fill format and then set the Color property and Transparency property to set the shape's fill color and transparency
degree respectively.

Refer to the following example code to fill the shape with solid fill.

C#

//Solid Fill
IShape shape = worksheet.Shapes.AddShape(AutoShapeType.Balloon, 10, 10, 100, 100);
IColorFormat color = shape.Fill.Color;
color.RGB = Color.Red;
shape.Fill.Solid();

Gradient Fill

Gradient fill is a graphical effect which provides the 3D color look as one color blends into another. In gradient fill, you
first need to set the shape fill to the gradient fill using the OneColorGradient method, TwoColorGradient method or
PresetGradient method of the IFillFormat interface. When you're done, you can then insert, delete or modify gradient
stops; set the fill style rotation along with the shape and the angle of the gradient fill using the GradientStops
property, RotateWithObject property and GradientAngle property of the IFillFormat interface.

Four types of gradient fills, namely line, radial, rectangular and path are supported by GcExcel. By default, the 'Line'
gradient fill is applied.

Refer to the following example code to fill the shape with gradient fill using PresetGradient method.

C#

//Gradient Fill
IShape shape1 = worksheet.Shapes.AddShape(AutoShapeType.Heart, 120, 10, 100, 100);
shape1.Fill.PresetGradient(GradientStyle.Vertical, 3, PresetGradientType.Silver);
shape1.Fill.RotateWithObject = false;

Refer to the following example code to fill the shape with gradient fill using TwoColorGradient method.

C#

// Initialize workbook
Workbook workbook = new Workbook();
// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

// Add a shape
IShape rectangle = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 20, 20, 300, 100);

// Init a two color gradient fill
rectangle.Fill.TwoColorGradient(GradientStyle.Horizontal, 1);

Documents for Excel, .NET Edition 172

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//save to an excel file
workbook.Save("LineGradient.xlsx");

To set the radial, rectangular or path gradient fill, you also need to set the GradientPathType along with using
the TwoColorGradient method.

Refer to the following example code to fill the shape with 'Radial' gradient fill.

C#

// Initialize workbook
Workbook workbook = new Workbook();
// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

// Add a shape
IShape rectangle = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 20, 20, 300, 100);

// Init a two color gradient fill
rectangle.Fill.TwoColorGradient(GradientStyle.FromCenter, 1);

// Set gradient path type
rectangle.Fill.GradientPathType = PathShapeType.Radial;

//save to an excel file
workbook.Save("RadialGradient.xlsx");

Pattern Fill

In pattern fill, you first need to set the shape fill to pattern fill using the Patterned method of the IFillFormat interface.
Afterwards, you can set the background color and the pattern color using Color property and PatternColor property of
the IFillFormat interface.

Refer to the following example code to fill the shape with pattern fill.

C#

//Pattern Fill
IShape shape2 = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 240, 10, 100, 100);
shape2.Fill.Patterned(GrapeCity.Documents.Excel.Drawing.PatternType.Percent10);
shape2.Fill.Color.ObjectThemeColor = ThemeColor.Accent2;
shape2.Fill.PatternColor.ObjectThemeColor = ThemeColor.Accent6;

Picture Fill

In picture fill, you can use the AddShape method of the IShapes interface to first add the shape that you want to fill with
a picture. Further, you can also set the picture format including characteristics like picture height, picture width,
brightness, contrast ratio, re-coloring, x-axis and y-axis offset etc using the properties of the IPictureFormat interface.

Refer to the following example code to fill the shape with picture.

Documents for Excel, .NET Edition 173

Copyright © 2021 GrapeCity, Inc. All rights reserved.

C#

// Add shape of picture type
IShape shape = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 20, 20, 100, 100);
string path = @"Images\flower.jpg";
FileStream stream = System.IO.File.Open(path, FileMode.Open);
shape.Fill.UserPicture(stream, ImageType.JPG);
stream.Dispose();
// Recolor the picture
shape.PictureFormat.ColorType = PictureColorType.Grayscale;
// Set picture's brightness and contrast ratio.
shape.PictureFormat.Brightness = 0.6;
shape.PictureFormat.Contrast = 0.3;
// Set height, width, x-axis offset and y-axis offset of the specified picture.
shape.PictureFormat.Crop.PictureOffsetX = 10;
shape.PictureFormat.Crop.PictureOffsetY = -5;
shape.PictureFormat.Crop.PictureWidth = 120;
shape.PictureFormat.Crop.PictureHeight = 80;

Texture Fill

In texture fill, you can fill the shape with texture using the PresetTextured method, or UserTextured method of the
IFillFormat interface. Further, you can also use the TextureAlignment property, TextureHorizontalScale
property, TextureOffsetX property, TextureOffsetY property and TextureVerticalScale property to configure the
layout of the texture.

Refer to the following example code to fill the shape with texture fill.

C#

//Texture Fill
IShape shape3 = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 360, 10, 100, 100);
shape3.Fill.PresetTextured(PresetTexture.Canvas);
shape3.Fill.TextureAlignment = TextureAlignment.Center;
shape3.Fill.TextureOffsetX = 2.5;
shape3.Fill.TextureOffsetY = 3.2;
shape3.Fill.TextureHorizontalScale = 0.9;
shape3.Fill.TextureVerticalScale = 0.2;
shape3.Fill.Transparency = 0.5;

Line

Line is a kind of border around the shape. You can create lines around shapes inserted on cells of a spreadsheet using the
properties and methods of ILineFormat interface.

Refer to the following example code to configure the line and line style for the shape.

C#

// To set shape's line style.

Documents for Excel, .NET Edition 174

Copyright © 2021 GrapeCity, Inc. All rights reserved.

IShape shape = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 10, 10, 100, 100);
shape.Line.DashStyle = LineDashStyle.Dash;
shape.Line.Style = LineStyle.Single;
shape.Line.Weight = 2;
shape.Line.Color.ObjectThemeColor = ThemeColor.Accent6;
shape.Line.Transparency = 0.3;

Shape's Line also supports solid fill, gradient fill and pattern fill and its usage is similar to the Shape Fill.

3D Formatting

GcExcel allows you to format the three-dimensional layout for the inserted shape by setting its rotation degree around x,y
and z axis.

Refer to the following example code to apply 3D formatting to the embedded shape.

C#

// To set shape's rotation degree arround x, y, z axis.
IShape shape = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 50, 10, 100, 100);
shape.ThreeD.RotationX = 50;
shape.ThreeD.RotationY = 20;
shape.ThreeD.RotationZ = 30;
shape.ThreeD.Depth = 7;
shape.ThreeD.Z = 20;

Shape Text
In GcExcel, you can configure the text and text style for the shape as per your own preferences by using the TextFrame
property of the IShape interface.

Refer to the following example code to configure the text and text style for the inserted shape.

C#

// To config shape's text and text style.
IShape shape = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 40, 40, 100, 100);
shape.TextFrame.TextRange.Font.Color.RGB = System.Drawing.Color.FromArgb(0, 255, 0);
shape.TextFrame.TextRange.Font.Bold = true;
shape.TextFrame.TextRange.Font.Italic = true;
shape.TextFrame.TextRange.Font.Size = 20;
shape.TextFrame.TextRange.Font.Strikethrough = true;

shape.TextFrame.TextRange.Paragraphs.Add("This is a rectangle shape.");
shape.TextFrame.TextRange.Paragraphs.Add("My name is GcExcel.");
shape.TextFrame.TextRange.Paragraphs[1].Runs.Add("Hello World!");

shape.TextFrame.TextRange.Paragraphs[1].Runs[0].Font.Strikethrough = false;
shape.TextFrame.TextRange.Paragraphs[1].Runs[0].Font.Size = 35;

Documents for Excel, .NET Edition 175

Copyright © 2021 GrapeCity, Inc. All rights reserved.

You can also set the alignment and position of text on shape by using the HorizontalAnchor and VerticalAnchor
properties of ITextFrame interface. These properties configure the horizontal and vertical alignment of text on shape.

Further, the HorizontalAnchor and VerticalAnchor enumerations specify the position of text in the text frame. The text
can be placed horizontally at the center or vertically at top, middle or bottom.

These different alignments and positions of text on shape can also be exported to PDF document.

Refer to the following example code to configure the alignment and position of text on a shape.

C#

Workbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];

//Add a shape.
IShape shape = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 10, 10, 300, 300);

//Add two paragraphs for the shape.
shape.TextFrame.TextRange.Paragraphs.Add("GrapeCity Documents for Excel");
shape.TextFrame.TextRange.Paragraphs.Add("Middle Centered");

//Centers text vertically.
shape.TextFrame.VerticalAnchor = VerticalAnchor.AnchorMiddle;
//Centers text horizontally.
shape.TextFrame.HorizontalAnchor = HorizontalAnchor.Center;

workbook.Save("Alignment.xlsx");
workbook.Save("Alignment.pdf");

Note: The right alignment for text on shape is not supported in GcExcel as it is not supported in Excel.

Hyperlink on Shape
In GcExcel, hyperlinks can be added to various shape types like basic shapes, charts, connectors, pictures and group
shapes. It allows users to quickly navigate to related information on a webpage, external file, specific range in the same
workbook, or email address by clicking on the shape.

Note: Hyperlink cannot be added to Comment and Slicer shape types.

Hyperlinks can be configured using the following properties of the IHyperlink interface.

1. The Address and SubAddress properties of the IHyperlink interface can be used to configure the hyperlink
references. The table shown below illustrates both the properties with examples:

Link To Address SubAddress

External File Example: "C:\Users\Desktop\test.xlsx" null

Webpage Example: "http://www.grapecity.com/" null

Documents for Excel, .NET Edition 176

Copyright © 2021 GrapeCity, Inc. All rights reserved.

A range in this document Example: null "Sheet1!C3:E4"

Email Address Example: "mailto: abc.xyz@grapecity.com" null

2. The EmailSubject property can be used to set the text of hyperlink's email subject line.
3. The ScreenTip property can be used to set the tip text for the specified hyperlink.
4. The TextToDisplay property can be used to set the text to be displayed for the specified hyperlink.

Add Hyperlink

A user can add hyperlink to a shape in a worksheet using the Add method of the IHyperLinks interface.

Refer to the following example code to insert hyperlinks on shapes to redirect to an external file, webpage, range within
the worksheet and email address.

C#

//Add a hyperlink to external file

//Add a Shape
IShape shape = worksheet.Shapes.AddShape(AutoShapeType.Oval, 1, 1, 200, 100);
shape.TextFrame.TextRange.Paragraphs.Add("Link to Test.xlsx file");
//Add Hyperlink
worksheet.Hyperlinks.Add(shape, @"C:\Test.xlsx", null, "Link to Test.xlsx file",
"Test.xlsx");
//Save to an excel file
workbook.Save("ExternalHyperlink.xlsx");

C#

// Add a hyperlink to web page

//Add a Shape
IShape picture = worksheet.Shapes.AddPicture(@"Images\grapecity-logo.jpg", 1, 1, 100,
100);
//Add Hyperlink
worksheet.Hyperlinks.Add(picture, "https://www.grapecity.com/", null , "Click to Open",
"GrapeCity");
//Save to an excel file
workbook.Save("ShapeHyperlink.xlsx");

C#

// Create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();
// Fetch a worksheet
IWorksheet worksheet = workbook.Worksheets[0];
// Add another worksheet
IWorksheet worksheet1 = workbook.Worksheets.Add();
#region HyperlinkRange
//Add a hyperlink to a range in Sheet2
//Add a Shape in Sheet1

Documents for Excel, .NET Edition 177

Copyright © 2021 GrapeCity, Inc. All rights reserved.

IShape shape = worksheet.Shapes.AddShape(AutoShapeType.Oval, 1, 1, 200, 100);
shape.TextFrame.TextRange.Paragraphs.Add("Go To sheet2 J3:K4");
//Add Hyperlink in Sheet1 which navigates to range J3:K4 in Sheet2
worksheet.Hyperlinks.Add(shape, null, "Sheet2!J3:K4", "Go To sheet2 J3:K4");
//Save to an excel file
workbook.Save("RangeHyperlink.xlsx");

C#

//Add a hyperlink to email address.

//Add a Shape
IShape shape = worksheet.Shapes.AddShape(AutoShapeType.Oval, 1, 1, 200, 100);
shape.TextFrame.TextRange.Paragraphs.Add("Send Feedback");
//Add Hyperlink
worksheet.Hyperlinks.Add(shape, "mailto:web_feedback@grapecity.com", null, "Send your
valuable feedback.", "Feedback");
//Save to an excel file
workbook.Save("MailTo.xlsx");

Delete Hyperlink

The hyperlink on the shape can be removed using the Delete method of the IHyperlink interface.

Refer to the following example code to delete hyperlink.

C#

//Delete hyperlink.

//Add Shape
IShape shapeOval = worksheet.Shapes.AddShape(AutoShapeType.Oval, 1, 1, 200, 100);

// Create Hyperlinks
IHyperlink hyperlink1 = worksheet.Hyperlinks.Add(shapeOval,
"https://www.grapecity.com/", null, "Click to Open", "GrapeCity");

//Delete hyperlink1.
hyperlink1.Delete();

//Save to an excel file
workbook.Save("DeleteHyperlink.xlsx");

Group or Ungroup Shapes
GcExcel allows you to group or ungroup shapes in a worksheet. Shapes can be grouped together when there is a need to
perform certain action on the bunch of shapes together. For example: adding similar style to shapes, aligning, rotating,
copying or pasting the grouped shapes together. It does not only saves a considerable amount of time and efforts but
also helps in ensuring that the desired consistency is maintained in all the shapes.

Documents for Excel, .NET Edition 178

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Group Shapes

Several shapes can be grouped together using the Group method of the IShapeRange interface. The IShapeRange
interface represents the range of the shapes which needs to be grouped together. The grouped shapes behave as a single
shape.

Refer to the following example code to group shapes.

C#

// Initialize workbook
Workbook workbook = new Workbook();
// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];
//Creating shapes collection for activeSheet
IShapes shapes = workbook.ActiveSheet.Shapes;

// Adding Shapes to shapes collection
IShape ShapeBegin = shapes.AddShape(AutoShapeType.Wave, 10, 10, 100, 100);
IShape EndBegin = shapes.AddShape(AutoShapeType.RoundedRectangle, 200, 200, 100, 100);
// Adding Connector Shape to shapes collection
IShape ConnectorShape = shapes.AddConnector(ConnectorType.Straight, 10, 10, 101, 101);

//Connecting ShapeBegin & EndBegin shapes by connector shape
ConnectorShape.ConnectorFormat.BeginConnect(ShapeBegin, 3);
ConnectorShape.ConnectorFormat.EndConnect(EndBegin, 0);

//Adding IsoscelesTriangle shape to shapes collection
shapes.AddShape(AutoShapeType.IsoscelesTriangle, 370.8, 50.8, 81.6, 102.0);

//Creating shpRange collection to group certain shapes as given in array
IShapeRange shpRange = shapes.Range[new string[3] { shapes[0].Name, shapes[1].Name,
shapes[2].Name }];

// Grouping Shapes
IShape grouped = shpRange.Group();
// Setting Style for Grouped shape together
grouped.Line.Color.RGB = System.Drawing.Color.DarkOrange;
grouped.Fill.Color.RGB = System.Drawing.Color.LightGreen;
Console.WriteLine("Group Name is: " + grouped.Name);

// Saving workbook to Xlsx
workbook.Save(@"GroupedShapes.xlsx", SaveFileFormat.Xlsx);

Ungroup Shapes

A group of shapes in a specified range can be ungrouped using the Ungroup method of the IShape interface.

Refer to the following example code to ungroup shapes.

Documents for Excel, .NET Edition 179

Copyright © 2021 GrapeCity, Inc. All rights reserved.

C#

// Initialize workbook
Workbook workbook = new Workbook();
// Open workbook
workbook.Open(@"9-GroupedShapes.xlsx");
IShapes shapes = workbook.Worksheets[0].Shapes;

// UnGroup Shapes
for (int i = 0; i < shapes.Count; i++)
{
 if (shapes[i].Type == ShapeType.Group) // Or, if (shapes[i].Name == "Group 1")
 shapes[i].Ungroup();
}

// Or, we can just pass GroupName to Ungroup it
// shapes["Group 1"].Ungroup();

// Saving workbook to Xlsx
workbook.Save(@"10-UnGroupedShapes.xlsx", SaveFileFormat.Xlsx);

Shape Adjustment
Apart from changing the size of a shape in GcExcel, you can also change the geometry of a shape and modify its
appearance. This can be achieved by setting the adjustment values of shapes, such as AutoShapes or Connectors. It allows
you to have more control over the shapes in order to create efficient flowcharts, dashboards and reports.

GcExcel provides the Adjustments property in the IShape interface to get a collection of adjustment values for the
specified AutoShape or Connector.

The valid ranges of adjustent values for different adjustement types are described below:

Adjustment type Valid values

Linear (horizontal or vertical) Value 0.0 represents the left or top edge of the shape.

Value 1.0 represents the right or bottom edge of the shape.

For shapes such as connectors and callouts, the values 0.0 and 1.0 correspond
to the rectangle defined by the starting and ending points of the connector or
callout line.

Values lesser than 0.0 and greater than 1.0 are also valid.

The valid values for the adjustment correspond to the valid adjustments that
can be made to shapes in Excel by extending the adjustment points.

For example, if you can only pull an adjustment point half way across the shape
in Excel, the maximum value for the corresponding adjustment will be 0.5.

Radial Value 1.0 represents the shape width. Hence, the maximum value for radial
adjustment is 0.5, which is half way across the shape.

Documents for Excel, .NET Edition 180

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Angle Value is expressed in degrees. If you specify the value outside the range of 180
degree, it will be normalized to be within that range.

In most cases, if a value exceeds the valid range, it is normalized to the closest valid value.

Using Code

 Refer to the following example code to adjust the dimensions of a shape in Excel:

C#

public void AdjustmentPointForShape()
{

 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];
 // Add a right arrow callout
 IShape shape = worksheet.Shapes.AddShape(AutoShapeType.RightArrowCallout, 20, 20,
200, 100);

 IAdjustments adjustments = shape.Adjustments;

 // Get the count of adjustment values for shape
 int c = adjustments.Count;
 Console.WriteLine("Count of Adjustment Values: " + c.ToString());

 // Set adjustment values for shapes
 adjustments[0] = 0.5;// arrow neck width
 adjustments[1] = 0.4;// arrow head width
 adjustments[2] = 0.5;// arrow head height
 adjustments[3] = 0.6;// text box width

 // Saving workbook to Xlsx
 workbook.Save(@"AdjustmentPointForShape.xlsx", SaveFileFormat.Xlsx);

}

Background Image
GcExcel allows you to set background image in a worksheet using the BackgroundPicture property of the IWorksheet
interface. The background image can be saved to Excel and is rendered multiple times, side by side, to cover the whole
area of the worksheet.

Using Code

Refer to the following example code to save sheet background image in Excel.

Documents for Excel, .NET Edition 181

Copyright © 2021 GrapeCity, Inc. All rights reserved.

C#

// Initialize workbook
Workbook workbook = new Workbook();
// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];
worksheet.Range["A1"].Value = "GrapeCity Documents for Excel";
worksheet.Range["A1"].Font.Size = 25;

using (FileStream pictureStream = File.Open(@"image.png", FileMode.Open,
FileAccess.Read))

{
 MemoryStream pictureMemoryStream = new MemoryStream();

 pictureStream.CopyTo(pictureMemoryStream);
 byte[] picturebytes = pictureMemoryStream.ToArray();

 //Add background image of the worksheet
 worksheet.BackgroundPicture = picturebytes;

}

workbook.Save(@"SetBackgroundImage.xlsx", SaveFileFormat.Xlsx);

The background image can also be included while exporting the worksheet to PDF documents. For more information,
refer to Support Sheet Background Image in this documentation.

Size and Position of Image
Sometimes, it is required to render an image in a worksheet at a specific position. In such cases, it becomes very difficult
to determine the position or size of the image by traversing through the cells of the worksheet.

GcExcel allows you to know the size and absolute position of an image by using GetRangeBoundary method of type
Rectangle in the CellInfo class. The method returns the location and size of the image (in pixels).

Using Code

Refer to the following example code to get the location and size of an image by adding it at a specified range in a
worksheet.

C#

IWorkbook workbook = new Workbook();
IWorksheet worksheet = workbook.ActiveSheet;
IRange range = worksheet.Range["D4:H8"];

// Get the absolute location and size of the Range["D4:H8"] in the worksheet.
Rectangle rect = CellInfo.GetRangeBoundary(range);

Documents for Excel, .NET Edition 182

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Console.WriteLine("The location and size of the image:" + rect);
// Add the image to the Range["D4:H8"].
worksheet.Shapes.AddPictureInPixel("image.png", rect.X, rect.Y, rect.Width,
rect.Height);
workbook.Save("GetRangePosition.xlsx");

Image Transparency
GcExcel supports controlling the transparency of an image by providing Transparency property in IPictureFormat
interface. The value of Transparency can vary between 0.0 (opaque) to 1.0 (clear).

Using Code

Refer to the following example code to set the transparency of an image.

C#

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

//use sheet index to get worksheet
IWorksheet worksheet = workbook.Worksheets[0];

//add an image
var picture = worksheet.Shapes.AddPicture("Image.png", 10, 10, 200, 100);

//set image transparency as 60%
picture.PictureFormat.Transparency = 0.6;

//save to an excel file
workbook.Save("imagetransparent.xlsx");

Limitation

SpreadJS does not support image transparency, hence this info would be lost when using json I/O.

Control Position of Overlapping Shapes
The order of overlapping shapes in a worksheet is decided by their z-order positions. GcExcel allows its users to set the z-
order of shapes so that their positions can be controlled while creating flow charts or business diagrams etc.

The ZOrder method in GcExcel API can be used to move the specified shape in front of or behind the other shapes. It
takes ZOrderType enum as a parameter to specify the position of a shape relative to the other shapes.

The ZOrderPosition property of the IShape interface can be used to retrieve the position of a specified shape in the z-
order.

Note: If the z-order of a shape is changed, the index of the shape in Worksheet.Shapes collection is also changed.

Documents for Excel, .NET Edition 183

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Using Code

Refer to the below example code to add various shapes, change their z-order and get their positions in z-order in a
worksheet.

C#

// Initialize workbook
Workbook workbook = new Workbook();
// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

IShapes shapes = worksheet.Shapes;

//add shapes
IShape rectangle = shapes.AddShape(AutoShapeType.Rectangle, 20, 20, 100, 100);
rectangle.Fill.Color.RGB = System.Drawing.Color.Blue;

IShape oval = shapes.AddShape(AutoShapeType.Oval, 50, 50, 100, 100);
oval.Fill.Color.RGB = System.Drawing.Color.Green;

IShape pentagon = shapes.AddShape(AutoShapeType.Pentagon, 80, 80, 100, 100);
pentagon.Fill.Color.RGB = System.Drawing.Color.Red;

IShape triangle = shapes.AddShape(AutoShapeType.IsoscelesTriangle, 100, 100, 100, 100);
triangle.Fill.Color.RGB = System.Drawing.Color.Orange;

//set rectangle above oval
rectangle.ZOrder(ZOrderType.BringForward);

//get position of rectangle in z-order
Console.WriteLine("Z-Order rectangle: " + rectangle.ZOrderPosition);

//set triangle to bottom
triangle.ZOrder(ZOrderType.SendToBack);

//get position of triangle in z-order
Console.WriteLine("Z-Order triangle: " + triangle.ZOrderPosition);

//save to an excel file
workbook.Save("setshapezorder.xlsx");

Styles
GcExcel .NET allows you to format the cells in a spreadsheet with a set of styles that can be utilized to format cell
appearance in individual worksheets for enhanced clarity and increased readability. A cell style includes characteristics
such as fill (solid fill, gradient fill, pattern fill), fonts, borders, name style, and display format.

Documents for Excel, .NET Edition 184

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Applying style in a worksheet involves following tasks.

Set Sheet Styling
Create and Set Custom Named Style

Some of the built-in styles in GcExcel .NET are listed below:

Category Description Properties

Number
Format

Cell number format. IRange.NumberFormat

Alignment Horizontal and vertical alignment of cell content,
indentation,text wrap, text rotation and text
shrinking.

IRange.AddIndent

IRange.IndentLevel

IRange.WrapText

IRange.ShrinkToFit

IRange.MergeCells

IRange.ReadingOrder

IRange.Orientation

Font IRange.Font(IFont) IRange.Font(IFont)

Borders Cell border line styles and colors. IRange.Borders(IBorders)

Fill Cell pattern fill or gradient fill. IRange.Interior(IInterior)

Protection Cell protection options (Locked and Hidden) IRange.Locked

IRange.FormulaHidden

Apart from the built-in styles, you can also create custom styles with description for individual cells or a range of cells in a
worksheet where you can define all the style attributes and properties including font, font size, number format, alignment
etc.

Set Sheet Styling
You can apply styling to your worksheets by performing actions like setting different fill styles for a cell, customizing the
cell border and configuring the fonts for the spreadsheets etc.

Set fill
Solid fill
Pattern fill
Gradient fill

Linear gradient fill
Rectangular gradient fill

Set font
Set border
Set number format
Set alignment
Set protection

Documents for Excel, .NET Edition 185

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Set fill

You can set the fill style for a cell by using the Interior property of the IRange interface. A cell interior can be of three
types, namely, solid fill, pattern fill and gradient fill.

Solid fill

You can specify the fill style for the cell as solid by setting the Pattern property of the IInterior interface.

Refer to the following example code to set solid fill.

C#

// Solid Fill for B5
worksheet.Range["B5"].Interior.Pattern = Pattern.Solid;
worksheet.Range["B5"].Interior.Color = Color.FromArgb(255, 0, 255);

Pattern fill

You can integrate pattern fill in cells using the Pattern property of the IInterior interface to one of the valid pattern types.
Pattern fill consists of two parts - background Color and foreground Color.

In order to set the background color, you can use the Color, ColorIndex, ThemeColor and TintAndShade properties of
the IInterior interface. In order to set the foreground color, you can use the PatternColor, PatternColorIndex,
PatternThemeColor, PatternTintAndShade properties of the IInterior interface.

Note: For the TintAndShade property, it is important to enter a number only from -1(darkest) to 1(lightest). If any
value less than -1 or greater than 1 is provided, it will be treated as invalid and an exception will be thrown at
runtime. The value zero (0) refers to neutral. Also, the TintAndShade property works only with
the ThemeColor property.

Refer to the following example code to set pattern fill.

C#

// Pattern Fill for A1
worksheet.Range["A1"].Interior.Pattern = Pattern.LightDown;
worksheet.Range["A1"].Interior.Color = Color.FromArgb(255, 0, 255);
worksheet.Range["A1"].Interior.PatternColorIndex = 5;

Gradient Fill

You can integrate gradient fill in cells using the Gradient property of the IInterior interface.

Gradient fill can be of two types - Linear Gradient Fill and Rectangle Gradient Fill.

Linear gradient fill

You can set the linear gradient fill using the properties and methods of the ILinearGradient interface.

Refer to the following example code to set linear gradient fill.

Documents for Excel, .NET Edition 186

Copyright © 2021 GrapeCity, Inc. All rights reserved.

C#

// Gradient Fill for C1
worksheet.Range["C1"].Interior.Pattern = Pattern.LinearGradient;
(worksheet.Range["C1"].Interior.Gradient as ILinearGradient).ColorStops[0].Color =
Color.FromArgb(255, 0, 0);
(worksheet.Range["C1"].Interior.Gradient as ILinearGradient).ColorStops[1].Color =
Color.FromArgb(255, 255, 0);

(worksheet.Range["C1"].Interior.Gradient as ILinearGradient).Degree = 90;

Rectangular gradient fill

You can also set the rectangular gradient fill using the properties and methods of the IRectangularGradient interface.

Refer to the following example code to set rectangular gradient fill.

C#

// Rectangular Gradient Fill for E1
worksheet.Range["E1"].Interior.Pattern = Pattern.RectangularGradient;
(worksheet.Range["E1"].Interior.Gradient as IRectangularGradient).ColorStops[0].Color =
Color.FromArgb(255, 0, 0);
(worksheet.Range["E1"].Interior.Gradient as IRectangularGradient).ColorStops[1].Color =
Color.FromArgb(0, 255, 0);

(worksheet.Range["E1"].Interior.Gradient as IRectangularGradient).Bottom = 0.2;
(worksheet.Range["E1"].Interior.Gradient as IRectangularGradient).Right = 0.3;
(worksheet.Range["E1"].Interior.Gradient as IRectangularGradient).Top = 0.4;
(worksheet.Range["E1"].Interior.Gradient as IRectangularGradient).Left = 0.5;

Set font

You can customize the font of a worksheet using the Font property of IRange interface.

Refer to the following example code to set font style in your worksheet.

C#

// Set Font
worksheet.Range["A1"].Value = "GcExcel";
worksheet.Range["A1"].Font.ThemeColor = ThemeColor.Accent1;
worksheet.Range["A1"].Font.TintAndShade = -0.5;
worksheet.Range["A1"].Font.ThemeFont = ThemeFont.Major;
worksheet.Range["A1"].Font.Bold = true;
worksheet.Range["A1"].Font.Size = 20;
worksheet.Range["A1"].Font.Strikethrough = true;

Set border

You can customize the border of a worksheet using the Borders property of the IRange interface.

Documents for Excel, .NET Edition 187

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Refer to the following example code to set border in your worksheet.

C#

// Set Border
worksheet.Range["A1:B5"].Borders.LineStyle = BorderLineStyle.DashDot;
worksheet.Range["A1:B5"].Borders.ThemeColor = ThemeColor.Accent1;

worksheet.Range["A1:B5"].Borders[BordersIndex.EdgeRight].LineStyle =
BorderLineStyle.Double;
worksheet.Range["A1:B5"].Borders[BordersIndex.EdgeRight].ThemeColor =
ThemeColor.Accent2;
worksheet.Range["A1:B5"].Borders[BordersIndex.DiagonalDown].LineStyle =
BorderLineStyle.Double;
worksheet.Range["A1:B5"].Borders[BordersIndex.DiagonalDown].ThemeColor =
ThemeColor.Accent5;

Set number format

You can set the number format in a worksheet using the NumberFormat property of the IRange interface.

Refer to the following example code to set number format in your worksheet.

C#

// Set Number format
worksheet.Range["A5"].Value = 12;
worksheet.Range["A5"].NumberFormat = "$#,##0.00";

Set alignment

You can customize the alignment of a worksheet using any of the properties : HorizontalAlignment
property, VerticalAlignment property, AddIndent property and ReadingOrder property of the IRange interface.

Refer to the following example code to set alignment in your worksheet.

C#

// Set Alignment
worksheet.Range["B8"].HorizontalAlignment = HorizontalAlignment.Distributed;
worksheet.Range["B8"].AddIndent = true;
worksheet.Range["B8"].VerticalAlignment = VerticalAlignment.Top;
worksheet.Range["B8"].ReadingOrder = ReadingOrder.RightToLeft;

Set protection

You can set protection for your worksheet using the FormulaHidden property and Locked property of the IRange
interface.

Refer to the following example code to set protection for your worksheet.

C#

Documents for Excel, .NET Edition 188

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//Set Protection
worksheet.Range["C4"].Locked = true;
worksheet.Range["C4"].FormulaHidden = true;

Create and Set Custom Named Style
Named style is a custom cell style that you apply to your workbook or worksheet with a unique name, which is different
from the already existing built-in style names defined for a spreadsheet.

You can create and set custom named styles as and when required. You can also modify an existing style and save it as
another workbook style. In GcExcel .NET, Styles refers to the named style collection that stores both the built-in and
custom named styles.

While working with styles in the spreadsheets, you can use any of the following ways -

Create and Set a Custom Named Style
Modify an Existing Style and Save it as a New Workbook Style

Create and Set a Custom Named Style

GcExcel .NET enables you to define custom named styles for your worksheet, configure it as per your preferences and
store them in the collection so that they can be accessed later.

You can add a custom named style to your worksheet using the Add method of IStyleCollection interface. This
method can also be used to return an IStyle instance. If you want to configure the named style settings in your
spreadsheet, you can use the properties of the IStyle interface.

Refer to the following example code to create a custom name style and configure its settings.

C#

//Add custom name style.
IStyle style = workbook.Styles.Add("SampleStyle");

//Config custom name style settings begin.
//Border
style.Borders[BordersIndex.EdgeLeft].LineStyle = BorderLineStyle.Thin;
style.Borders[BordersIndex.EdgeTop].LineStyle = BorderLineStyle.Thick;
style.Borders[BordersIndex.EdgeRight].LineStyle = BorderLineStyle.Double;
style.Borders[BordersIndex.EdgeBottom].LineStyle = BorderLineStyle.Double;
style.Borders.Color = Color.FromArgb(0, 255, 0);

//Protection
style.FormulaHidden = true;
style.Locked = false;

//Number
style.NumberFormat = "#,##0_);[Red](#,##0)";

//Alignment
style.HorizontalAlignment = HorizontalAlignment.Right;

Documents for Excel, .NET Edition 189

Copyright © 2021 GrapeCity, Inc. All rights reserved.

style.VerticalAlignment = VerticalAlignment.Bottom;
style.WrapText = true;
style.IndentLevel = 5;
style.Orientation = 45;

//Fill
style.Interior.ColorIndex = 5;
style.Interior.Pattern = GrapeCity.Documents.Excel.Pattern.Down;
style.Interior.PatternColor = Color.FromArgb(0, 0, 255);
style.IncludeAlignment = false;
style.IncludeBorder = true;
style.IncludeFont = false;
style.IncludeNumber = true;
style.IncludePatterns = false;
style.IncludeProtection = true;
//Config custom name style settings end.

You can also get or set named style in a worksheet using the Style property of the IRange interface. The Styles
collection stores both built-in and custom named styles in GcExcel .NET.

Refer to the following example code to get or set named style in your worksheet.

C#

//Set range's style to custom name style.
worksheet.Range["A1"].Style = worksheet.Workbook.Styles["SampleStyle"];

Modify an Existing Style and Save it as a New Workbook Style

With GcExcel.NET, you don't always need to create a custom named style right from the scratch. Instead, you can modify
an existing style (via getting the existing style from the Styles collection) as per your specific preferences and save the new
style as another workbook style that can be used as and when required.

Users can use the Add method in order to add the new style. The newly created custom style will be based on the
existing workbook style and will be stored in the IStyleCollection interface so that it can be used as another workbook
style in the future.

Refer to the following example code in order to modify an existing style and save it as a new workbook style in the Styles
collection.

C#

// Create workbook
Workbook workbook = new Workbook();

// Fetch the default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

// Fetch existing Style "Good" and set to Range A1's Style
worksheet.Range["A1"].Style = workbook.Styles["Good"];

Documents for Excel, .NET Edition 190

Copyright © 2021 GrapeCity, Inc. All rights reserved.

// Setting Cell Text
worksheet.Range["A1"].Value = "Good";

// Create and modify a style based on current existing style "Good" and name it as
"MyGood"
IStyle myGood = workbook.Styles.Add("MyGood", workbook.Styles["Good"]);
myGood.Font.Bold = true;
myGood.Font.Italic = true;

// Set new style "MyGood" to Range B1's Style
worksheet.Range["B1"].Style = workbook.Styles["MyGood"];

// Setting Cell Text
worksheet.Range["B1"].Value = "MyGood";

// Saving the workbook
workbook.Save(@"6 - AddWorkbookStyles.xlsx");

Barcodes
GcExcel provides API to add barcodes in worksheets. These are very helpful in scanning information easily and quickly with
utmost precision. They also faciliate users to take informed business decisions and improve data analysis.

The following types of barcodes are supported in GcExcel:

QRCode
EAN-13
EAN-8
Codabar
Code39
Code93
Code128
GS1-128
Code49
PDF417
Data Matrix

GcExcel also supports SpreadJS JSON I/O of barcodes. For more information, refer to Import and Export SpreadJS Files.
Similarly, Barcodes can be exported to PDF documents. For more information about PDF exporting support , refer
to Export Barcodes.

Note: When saved to xlsx file, the barcode is displayed as error "#NAME", as it is not supported in Excel.

QRCode
QRCode is a two dimensional barcode representing symbology that enables effective handling of numeric, alphanumeric

Documents for Excel, .NET Edition 191

Copyright © 2021 GrapeCity, Inc. All rights reserved.

and byte data. This barcode can encode up to 7,366 characters.

The below image displays QRCode barcode in a PDF document.

Formula definition

You can set QRCode in a worksheet using the following formula:

=BC_QRCODE(value, color, backgroundColor, errorCorrectionLevel, model, version, mask, connection, connectionNo,
charCode, charset, quietZoneLeft, quietZoneRight, quietZoneTop, quietZoneBottom)

Note: The 'value' parameter is mandatory and the remaining ones are optional. This holds true for all the barcodes
that support 'value' parameter in GcExcel.

Parameter

Name Description

value A string that represents encode on the symbol of QRCode.

color A color that represents the barcode color. The default value is 'rgb(0,0,0)'.

backgroundColor A color that represents the barcode backgroundcolor. The default value is 'rgb(255, 255, 255)'

errorCorrectionLevel A string that represents the error correction level of QRCode. It has 'L|M|Q|H' four error correction
levels. The default value is 'L'.

model A value that represents the model of QRCode. It has 1 and 2 models. The default value is 2.

version Vesion range is 1-14 for model1 and model 2. It has 'auto|1-14|1-40' values. The default value is
'auto'.

mask A value that represents mask pattern for QRCode. It has 'auto and 0-7' eight mask pattern.

connection A value that represents whether the symbol is part of a structured append message. The default
value is false.

connectionNo Specifies which block the symbol is in the structured append message. It has '0-15' values. The
default value is '0'.

Documents for Excel, .NET Edition 192

Copyright © 2021 GrapeCity, Inc. All rights reserved.

charCode A value that represents the collection of characters of QRCode.

charset A value that represents which charset to use. It has 'UTF-8 and Shift-JIS'.

quietZoneLeft A value that represents the size of left quiet zone.

quietZoneRight A value that represents the size of right quiet zone.

quietZoneTop A value that represents the size of top quiet zone.

quietZoneBottom A value that represents the size of bottom quiet zone.

Using Code

This example code sets a QRCode in the worksheet.

C#

// Create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

// Set worksheet layout and data
IWorksheet worksheet = workbook.Worksheets[0];
worksheet.Range["B:K"].ColumnWidth = 15;
worksheet.Range["4:6"].RowHeight = 60;
worksheet.Range["A:A"].ColumnWidth = 2;
worksheet.Range["B2"].Value = "QR Code";
worksheet.Range["B2:K2"].Merge(true);
worksheet.Range["I3:J3"].Merge(true);
worksheet.Range["B3:H3"].Value = new object[,]{
 {"Server", "Data", "Defult", "Change errorCorrectionLevel", "Change model", "Change
version", "Change mask"}
};
worksheet.Range["I3"].Value = "Change connection and connectionNo";
worksheet.Range["K3:K5"].Value = new object[,]
 {
 {"Explain" },
 {"No QR Code generated, barcode data is too short to create connection symbol."},
 {"No QR Code generated, barcode data is too short to create connection symbol."}
 };
worksheet.PageSetup.PrintTitleColumns = "$A:$C";
worksheet.PageSetup.Orientation = PageOrientation.Landscape;
worksheet.PageSetup.PrintGridlines = true;
worksheet.Range["K4:K5"].Font.Color = Color.Red;
worksheet.Range["K4:K5"].WrapText = true;
worksheet.Range["B4:C6"].HorizontalAlignment = HorizontalAlignment.Center;
worksheet.Range["B4:C6"].VerticalAlignment = VerticalAlignment.Center;
worksheet.Range["B2:K3"].HorizontalAlignment = HorizontalAlignment.Center;
worksheet.Range["B2:K3"].VerticalAlignment = VerticalAlignment.Center;
worksheet.Range["B4:C6"].Value = new object[,]
 {

Documents for Excel, .NET Edition 193

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 {"Police", "911"},
 {"Travel Info Call 511", "511"},
 { "", "www.grapecity.com"},
 };

// Set formula
for (var i = 4; i < 7; i++)
{
 worksheet.Range["D" + i].Formula = "=BC_QRCODE" + "(C" + i + ")";
 worksheet.Range["E" + i].Formula = "=BC_QRCODE" + "(C" + i + ",,,\"H\")";
 worksheet.Range["F" + i].Formula = "=BC_QRCODE" + "(C" + i + ",,,,1)";
 worksheet.Range["G" + i].Formula = "=BC_QRCODE" + "(C" + i + ",,,,,8)";
 worksheet.Range["H" + i].Formula = "=BC_QRCODE" + "(C" + i + ",,,,,,3)";
 worksheet.Range["I" + i].Formula = "=BC_QRCODE" + "(C" + i + ",,,,,,,\"true\",0)";
 worksheet.Range["J" + i].Formula = "=BC_QRCODE" + "(C" + i + ",,,,,,,\"true\",1)";
}

// Save to a pdf file
workbook.Save("qrcode.pdf");

EAN-13
EAN-13 barcode makes use of numeric characters (twelve numbers) and a check digit. This barcode accepts only twelve
numbers as a string to calculate a check digit (CheckSum) and adds it to the thirteenth position. The check digit is an
additional digit that can be used to verify that the barcode has been scanned accurately. When the CheckSum property is
set to True, the check digit is automatically added. This is mainly used in supermarkets and other retail businesses.

The below image displays EAN-13 barcode in a PDF document.

Formula definition

You can set EAN-13 barcode in a worksheet using the following formula:

=BC_EAN13(value, color, backgroundColor, showLabel, labelPosition, addOn, addOnLabelPosition, fontFamily, fontStyle,
fontWeight, fontTextDecoration, fontTextAlign, fontSize, quietZoneLeft, quietZoneRight, quietZoneTop, quietZoneBottom)

Documents for Excel, .NET Edition 194

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Note: The 'labelPosition' parameter can only be set to top or bottom. This holds true for all the barcodes that
support 'labelPosition' parameter in GcExcel.

Parameter

Name Description

value Specifies that the value length must be 12 or 13.

color A color that represents the barcode color. The default value is 'rgb(0,0,0)'.

backgroundColor A color that represents the barcode backgroundcolor. The default value is 'rgb(255, 255, 255)'

showLabel Specifies whether to show label text when the barcode has label.

labelPosition ​A value that represents the label position when the label is shown.

addOn ​A string that represents the add text of EAN-13. Specifies that value length must be 2 or 5.

addOnLabelPosition The position to add the text when text is shown.

fontFamily A string that represents the label text fontFamily. The default value is 'sans-serif'.

fontStyle A string that represents the label text fontStyle. The default value is 'normal'.

fontWeight A string that represents the label text fontWeight. The default value is 'normal'.

fontTextDecoration A string that represents the label text fontTextDecoration. The default value is 'none'.

fontTextAlign A string that represents the label text fontTextAlign. The default value is 'center'.

fontSize A string that represents the label text fontSize. The default value is '12px'.

quietZoneLeft A value that represents the size of left quiet zone.

quietZoneRight A value that represents the size of right quiet zone.

quietZoneTop A value that represents the size of top quiet zone.

quietZoneBottom A value that represents the size of bottom quiet zone.

Using Code

This example code sets EAN13 in the worksheet.

C#

// Create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

// Set worksheet layout and data
IWorksheet worksheet = workbook.Worksheets[0];
worksheet.Range["B:C"].ColumnWidth = 15;
worksheet.Range["D:G"].ColumnWidth = 20;
worksheet.Range["4:7"].RowHeight = 60;

Documents for Excel, .NET Edition 195

Copyright © 2021 GrapeCity, Inc. All rights reserved.

worksheet.Range["A:A"].ColumnWidth = 5;
worksheet.Range["B2"].Value = "EAN-13";
worksheet.Range["B2:F2"].Merge(true);
worksheet.Range["B3:G3"].Value = new object[,]{
 {"Name", "Number", "Defult", "Change addOn", "Change addOnLabelPosition", "Explain"}
};
worksheet.Range["B4:C7"].HorizontalAlignment = HorizontalAlignment.Center;
worksheet.Range["B4:C7"].VerticalAlignment = VerticalAlignment.Center;
worksheet.Range["B2:F3"].HorizontalAlignment = HorizontalAlignment.Center;
worksheet.Range["B2:F3"].VerticalAlignment = VerticalAlignment.Center;
worksheet.Range["B4:C6"].Value = new object[,]
 {
 {"Medicine", "692031229621"},
 {"Pen", "6945091701532"},
 {"value length is 13", "8142486545683"}
 };
worksheet.Range["G6"].Value = "No EAN-13 generated, because the last digit is check-sum
digit and it is invalid";
worksheet.Range["G6"].Font.Color = Color.Red;
worksheet.Range["B4:C6"].WrapText = true;
worksheet.Range["G6"].WrapText = true;
worksheet.PageSetup.Orientation = PageOrientation.Landscape;
worksheet.PageSetup.PrintGridlines = true;

// Set formula
for (var i = 4; i < 7; i++)
{
 worksheet.Range["D" + i].Formula = "=BC_EAN13" + "(C" + i + ")";
 worksheet.Range["E" + i].Formula = "=BC_EAN13" + "(C" + i + ",,,,,22)";
 worksheet.Range["F" + i].Formula = "=BC_EAN13" + "(C" + i + ",,,,,22,\"bottom\")";
}

// Save to a pdf file
workbook.Save("ean13.pdf");

EAN-8
EAN-8 barcode is used on small packages where an EAN-13 barcode would be too large. Similar to EAN-13, EAN-8 uses
only numeric characters and a check digit. This barcode accepts only seven numbers as a string to calculate a check digit
(CheckSum) and add it to the eighth position. The check digit is an additional digit that can be used to verify that the
barcode has been scanned accurately. When the CheckSum property is set to True, the check digit is automatically added.

The below image displays EAN-8 barcode in a PDF document.

Documents for Excel, .NET Edition 196

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Formula definition

You can set EAN-8 barcode in a worksheet using the following formula:

=BC_EAN8(value, color, backgroundColor, showLabel, labelPosition, fontFamily, fontStyle, fontWeight, fontTextDecoration,
fontTextAlign, fontSize, quietZoneLeft, quietZoneRight, quietZoneTop, quietZoneBottom)

Parameter

Name Description

value Specifies that the value length must be 7 or 8.

color A color that represents the barcode color. The default value is 'rgb(0,0,0)'.

backgroundColor A color that represents the barcode backgroundcolor. The default value is 'rgb(255, 255, 255)'

showLabel Specifies whether to show label text when the barcode has label.

labelPosition ​A value that represents the label position when the label is shown.

fontFamily A string that represents the label text fontFamily. The default value is 'sans-serif'.

fontStyle A string that represents the label text fontStyle. The default value is 'normal'.

fontWeight A string that represents the label text fontWeight. The default value is 'normal'.

fontTextDecoration A string that represents the label text fontTextDecoration. The default value is 'none'.

fontTextAlign A string that represents the label text fontTextAlign. The default value is 'center'.

fontSize A string that represents the label text fontSize. The default value is '12px'.

quietZoneLeft A value that represents the size of left quiet zone.

quietZoneRight A value that represents the size of right quiet zone.

quietZoneTop A value that represents the size of top quiet zone.

quietZoneBottom A value that represents the size of bottom quiet zone.

Documents for Excel, .NET Edition 197

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Using Code

This example code sets EAN-8 in the worksheet.

C#

// Create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

// Set worksheet layout and data
IWorksheet worksheet = workbook.Worksheets[0];
worksheet.Range["B:G"].ColumnWidth = 17;
worksheet.Range["4:7"].RowHeight = 60;
worksheet.Range["A:A"].ColumnWidth = 5;
worksheet.Range["B2"].Value = "EAN-8";
worksheet.Range["B2:F2"].Merge(true);
worksheet.Range["B3:G3"].Value = new object[,]{
 {"Name", "Number", "Defult", "Change showLable", "Change labelPosition", "Explain"}
};
worksheet.Range["B4:C7"].HorizontalAlignment = HorizontalAlignment.Center;
worksheet.Range["B4:C7"].VerticalAlignment = VerticalAlignment.Center;
worksheet.Range["B2:F3"].HorizontalAlignment = HorizontalAlignment.Center;
worksheet.Range["B2:F3"].VerticalAlignment = VerticalAlignment.Center;
worksheet.Range["B4:C6"].Value = new object[,]
 {
 {"Value length is 7", "4137962"},
 {"Value length is 8", "81424863"},
 {"value length is 8", "81424865"}
 };
worksheet.Range["G6"].Value = "No EAN-8 generated, because the last digit is check-sum
digit and it is invalid";
worksheet.Range["G6"].Font.Color = Color.Red;
worksheet.Range["B4:C6"].WrapText = true;
worksheet.Range["G6"].WrapText = true;
worksheet.PageSetup.Orientation = PageOrientation.Landscape;
worksheet.PageSetup.PrintGridlines = true;

// Set formula
for (var i = 4; i < 7; i++)
{
 worksheet.Range["D" + i].Formula = "=BC_EAN8" + "(C" + i + ")";
 worksheet.Range["E" + i].Formula = "=BC_EAN8" + "(C" + i + ",,,0)";
 worksheet.Range["F" + i].Formula = "=BC_EAN8" + "(C" + i + ",,,,\"top\")";
}

// Save to a pdf file
workbook.Save("ean8.pdf");

Documents for Excel, .NET Edition 198

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Codabar
Codabar is a barcode that uses alphanumeric characters including, A B C D + - : . / $ and all numbers. This is widely used
in sectors where serial numbers are required, such as blood Banks, door-to-door delivery service orders, and membership
card management.

The below image displays Codabar barcode in a PDF document.

Formula definition

You can set codabar in a worksheet using the following formula:

=BC_CODABAR(value, color, backgroudColor, showLabel, labelPosition, checkDigit, nwRatio, fontFamily, fontStyle,
fontWeight, fontTextDecoration, fontTextAlign, fontSize, quietZoneLeft, quietZoneRight, quietZoneTop, quietZoneBottom)

Parameter

Name Description

value A string that represents encode on the symbol of Codabar.

color A color that represents the barcode color. The default value is 'rgb(0,0,0)'.

backgroundColor A color that represents the barcode backgroundcolor. The default value is 'rgb(255, 255, 255)'

showLabel Specifies whether to show label text when the barcode has label.

labelPosition ​A value that represents the label position when the label is shown.

checkDigit Specifies whether the symbol needs a check digit. The default value is 'false'.

nwRatio A value that represents the wide and narrow bar ratio. It has values 2|3. The default value is '3'.

fontFamily A string that represents the label text fontFamily. The default value is 'sans-serif'.

fontStyle A string that represents the label text fontStyle. The default value is 'normal'.

fontWeight A string that represents the label text fontWeight. The default value is 'normal'.

Documents for Excel, .NET Edition 199

Copyright © 2021 GrapeCity, Inc. All rights reserved.

fontTextDecoration A string that represents the label text fontTextDecoration. The default value is 'none'.

fontTextAlign A string that represents the label text fontTextAlign. The default value is 'center'.

fontSize A string that represents the label text fontSize. The default value is '12px'.

quietZoneLeft A value that represents the size of left quiet zone.

quietZoneRight A value that represents the size of right quiet zone.

quietZoneTop A value that represents the size of top quiet zone.

quietZoneBottom A value that represents the size of bottom quiet zone.

Using Code

This example code sets Codabar in the worksheet.

C#

// Create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

// Set worksheet layout and data
IWorksheet worksheet = workbook.Worksheets[0];
worksheet.Range["B:F"].ColumnWidth = 20;
worksheet.Range["4:7"].RowHeight = 60;
worksheet.Range["A:A"].ColumnWidth = 5;
worksheet.Range["B2"].Value = "Codabar";
worksheet.Range["B2:F2"].Merge(true);
worksheet.Range["B3:G3"].Value = new object[,]{
{"Name", "Number", "Defult", "Change checkDigit", "Change nwRatio"}
};

worksheet.Range["B4:C7"].HorizontalAlignment = HorizontalAlignment.Center;
worksheet.Range["B4:C7"].VerticalAlignment = VerticalAlignment.Center;
worksheet.Range["B2:F3"].HorizontalAlignment = HorizontalAlignment.Center;
worksheet.Range["B2:F3"].VerticalAlignment = VerticalAlignment.Center;
worksheet.Range["B4:C6"].Value = new object[,]
 {
 {"Notebook", "6935205311092"},
 {"Paper", "6922266446146"},
 {"Value can contain letters and some symbol", "A1234+-/.$A"}
 };
worksheet.Range["B4:C6"].WrapText = true;
worksheet.Range["G6"].WrapText = true;
worksheet.PageSetup.Orientation = PageOrientation.Landscape;
worksheet.PageSetup.PrintGridlines = true;

// Set formula
for (var i = 4; i < 7; i++)

Documents for Excel, .NET Edition 200

Copyright © 2021 GrapeCity, Inc. All rights reserved.

{
 worksheet.Range["D" + i].Formula = "=BC_CODABAR" + "(C" + i + ")";
 worksheet.Range["E" + i].Formula = "=BC_CODABAR" + "(C" + i + ",,,,,\"true\")";
 worksheet.Range["F" + i].Formula = "=BC_CODABAR" + "(C" + i + ",,,,,,\"2\")";
}

// Save to a pdf file
workbook.Save("codabar.pdf");

Limitation

The "checkDigit" parameter takes effect only when the 'value' parameter's length is 13 and the barcode's label text
does not change.

Code39
Code 39 is a linear barcode that uses a total of nine bars to represent each symbol which includes numeric characters,
upper case characters and some special characters ("%" , "*", "$", "/", "." , "-", "+").

The below image displays Code39 barcode in a PDF document.

Formula definition

You can set Code39 in a worksheet using the following formula:

=BC_CODE39(value, color, backgroundColor, showLabel, labelPosition, labelWithStartAndStopCharacter, checkDigit,
nwRatio, fullASCII, fontFamily, fontStyle, fontWeight, fontTextDecoration, fontTextAlign, fontSize, quietZoneLeft,
quietZoneRight, quietZoneTop, quietZoneBottom)

Parameter

Name Description

Documents for Excel, .NET Edition 201

Copyright © 2021 GrapeCity, Inc. All rights reserved.

value A string that represents encode on the symbol of Code39.

color A color that represents the barcode color. The default value is 'rgb(0,0,0)'.

backgroundColor A color that represents the barcode backgroundcolor. The default value is 'rgb(255,
255, 255)'

showLabel Specifies whether to show label text when the barcode has label.

labelPosition ​A value that represents the label position when the label is shown.

labelWithStartAndStopCharacter Specifies whether to show the start and stop character in the label. The default value
is 'false'.

checkDigit Specifies whether the symbol needs a check digit. The default value is 'false'.

nwRatio A value that represents the wide and narrow bar ratio. It has values 2|3. The default
value is '3'.

fullASCII Specifies whether to support full ASCII for Code39. The default value is 'false'.

fontFamily A string that represents the label text fontFamily. The default value is 'sans-serif'.

fontStyle A string that represents the label text fontStyle. The default value is 'normal'.

fontWeight A string that represents the label text fontWeight. The default value is 'normal'.

fontTextDecoration A string that represents the label text fontTextDecoration. The default value is 'none'.

fontTextAlign A string that represents the label text fontTextAlign. The default value is 'center'.

fontSize A string that represents the label text fontSize. The default value is '12px'.

quietZoneLeft A value that represents the size of left quiet zone.

quietZoneRight A value that represents the size of right quiet zone.

quietZoneTop A value that represents the size of top quiet zone.

quietZoneBottom A value that represents the size of bottom quiet zone.

Using Code

This example code sets Code39 in the worksheet.

C#

// Create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

// Set worksheet layout and data
IWorksheet worksheet = workbook.Worksheets[0];
worksheet.Range["B:C"].ColumnWidth = 15;
worksheet.Range["D:H"].ColumnWidth = 25;
worksheet.Range["4:6"].RowHeight = 60;
worksheet.Range["A:A"].ColumnWidth = 5;
worksheet.Range["B2"].Value = "Code39";

Documents for Excel, .NET Edition 202

Copyright © 2021 GrapeCity, Inc. All rights reserved.

worksheet.Range["B2:F2"].Merge(true);
worksheet.Range["B3:H3"].Value = new object[,]{
 {"Name", "Number", "Defult", "Change labelWithStartAndStopCharacter", "Change
checkDigit", "Change checkDigit", "Change nwRatio", "Change fullASCII"}
};
worksheet.Range["B4:C7"].HorizontalAlignment = HorizontalAlignment.Center;
worksheet.Range["B4:C7"].VerticalAlignment = VerticalAlignment.Center;
worksheet.Range["B2:F3"].HorizontalAlignment = HorizontalAlignment.Center;
worksheet.Range["B2:F3"].VerticalAlignment = VerticalAlignment.Center;
worksheet.Range["B4:C6"].Value = new object[,]
 {
 {"Paper", "6922266446146"},
 {"Book", "9787560044231"},
 {"Value can contain some symbol", "1234+-#*"}
 };
worksheet.Range["B4:C6"].WrapText = true;
worksheet.Range["G6"].WrapText = true;
worksheet.PageSetup.PrintTitleColumns = "$A:$C";
worksheet.PageSetup.Orientation = PageOrientation.Landscape;
worksheet.PageSetup.PrintGridlines = true;

// Set formula
for (var i = 4; i < 7; i++)
{
 worksheet.Range["D" + i].Formula = "=BC_CODE39" + "(C" + i + ")";
 worksheet.Range["E" + i].Formula = "=BC_CODE39" + "(C" + i + ",,,,,\"true\")";
 worksheet.Range["F" + i].Formula = "=BC_CODE39" + "(C" + i + ",,,,,,\"true\")";
 worksheet.Range["G" + i].Formula = "=BC_CODE39" + "(C" + i + ",,,,,,,2)";
 worksheet.Range["H" + i].Formula = "=BC_CODE39" + "(C" + i + ",,,,,,,,\"true\")";
}

// Save to a pdf file
workbook.Save("code39.pdf");

Code93
Code93 barcode is a barcode that uses uppercase characters and numeric characters along with some special characters
("%" , "*", "$", "/", "." , "-", "+"). It is used primarily by Canada Post to encode supplementary delivery information.

The below image displays Code93 barcode in a PDF document.

Documents for Excel, .NET Edition 203

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Formula definition

You can set Code93 in a worksheet using the following formula:

=BC_CODE93(value, color, backgroudColor, showLabel, labelPosition, checkDigit, fullASCII, fontFamily, fontStyle,
fontWeight, fontTextDecoration, fontTextAlign, fontSize, quietZoneLeft, quietZoneRight, quietZoneTop, quietZoneBottom)

Parameter

Name Description

value A string that represents encode on the symbol of Code93.

color A color that represents the barcode color. The default value is 'rgb(0,0,0)'.

backgroundColor A color that represents the barcode backgroundcolor. The default value is 'rgb(255, 255, 255)'

showLabel Specifies whether to show label text when the barcode has label.

labelPosition ​A value that represents the label position when the label is shown.

checkDigit Specifies whether the symbol needs a check digit. The default value is 'false'.

fullASCII Specifies whether to support full ASCII for Code93. The default value is 'false'.

fontFamily A string that represents the label text fontFamily. The default value is 'sans-serif'.

fontStyle A string that represents the label text fontStyle. The default value is 'normal'.

fontWeight A string that represents the label text fontWeight. The default value is 'normal'.

fontTextDecoration A string that represents the label text fontTextDecoration. The default value is 'none'.

fontTextAlign A string that represents the label text fontTextAlign. The default value is 'center'.

fontSize A string that represents the label text fontSize. The default value is '12px'.

quietZoneLeft A value that represents the size of left quiet zone.

quietZoneRight A value that represents the size of right quiet zone.

Documents for Excel, .NET Edition 204

Copyright © 2021 GrapeCity, Inc. All rights reserved.

quietZoneTop A value that represents the size of top quiet zone.

quietZoneBottom A value that represents the size of bottom quiet zone.

Using Code

This example code sets Code93 in the worksheet.

C#

// Create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

// Set worksheet layout and data
IWorksheet worksheet = workbook.Worksheets[0];
worksheet.Range["B:F"].ColumnWidth = 20;
worksheet.Range["4:6"].RowHeight = 60;
worksheet.Range["A:A"].ColumnWidth = 5;
worksheet.Range["B2"].Value = "Code93";
worksheet.Range["B2:F2"].Merge(true);
worksheet.Range["B3:G3"].Value = new object[,]{
 {"Name", "Number", "Defult", "Change checkDigit", "Change fullASCII"}
};
worksheet.Range["B4:C7"].HorizontalAlignment = HorizontalAlignment.Center;
worksheet.Range["B4:C7"].VerticalAlignment = VerticalAlignment.Center;
worksheet.Range["B2:F3"].HorizontalAlignment = HorizontalAlignment.Center;
worksheet.Range["B2:F3"].VerticalAlignment = VerticalAlignment.Center;
worksheet.Range["B4:C6"].Value = new object[,]
 {
 {"Pen", "6945091701532"},
 {"Book", "9787560044231"},
 {"Value can contain letters", "123abc"}
 };
worksheet.Range["B4:C6"].WrapText = true;
worksheet.Range["G6"].WrapText = true;
worksheet.PageSetup.Orientation = PageOrientation.Landscape;
worksheet.PageSetup.PrintGridlines = true;

// Set formula
for (var i = 4; i < 7; i++)
{
 worksheet.Range["D" + i].Formula = "=BC_CODE93" + "(C" + i + ")";
 worksheet.Range["E" + i].Formula = "=BC_CODE93" + "(C" + i + ",,,,,\"true\")";
 worksheet.Range["F" + i].Formula = "=BC_CODE93" + "(C" + i + ",,,,,,\"true\")";
}

// Save to a pdf file
workbook.Save("code93.pdf");

Documents for Excel, .NET Edition 205

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Code128
The Code 128 barcode is a linear barcode that represents high-density linear symbology to encode text, numbers, various
functions and the entire 128 ASCII character set (from ASCII 0 to ASCII 128). It is widely used in enterprise internal
management, production process, logistics control system of the bar code system.

The below image displays Code128 barcode in a PDF document.

Formula definition

You can set Code128 in a worksheet using the following formula:

=BC_CODE128(value, color, backgroudColor, showLabel, labelPosition, codeSet, fontFamily, fontStyle, fontWeight,
fontTextDecoration, fontTextAlign, fontSize, quietZoneLeft, quietZoneRight, quietZoneTop, quietZoneBottom)

Parameter

Name Description

value A string that represents encode on the symbol of Code128.

color A color that represents the barcode color. The default value is 'rgb(0,0,0)'.

backgroundColor A color that represents the barcode backgroundcolor. The default value is 'rgb(255, 255, 255)'

showLabel Specifies whether to show label text when the barcode has label.

labelPosition ​A value that represents the label position when the label is shown.

codeSet A value that represents which code is set to use for QRCode. It has 'auto|A|B|C' values. The default
value is 'auto'.

fontFamily A string that represents the label text fontFamily. The default value is 'sans-serif'.

Documents for Excel, .NET Edition 206

Copyright © 2021 GrapeCity, Inc. All rights reserved.

fontStyle A string that represents the label text fontStyle. The default value is 'normal'.

fontWeight A string that represents the label text fontWeight. The default value is 'normal'.

fontTextDecoration A string that represents the label text fontTextDecoration. The default value is 'none'.

fontTextAlign A string that represents the label text fontTextAlign. The default value is 'center'.

fontSize A string that represents the label text fontSize. The default value is '12px'.

quietZoneLeft A value that represents the size of left quiet zone.

quietZoneRight A value that represents the size of right quiet zone.

quietZoneTop A value that represents the size of top quiet zone.

quietZoneBottom A value that represents the size of bottom quiet zone.

Using Code

This example code sets Code128 in the worksheet.

C#

// Create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

// Set worksheet layout and data
IWorksheet worksheet = workbook.Worksheets[0];
worksheet.Range["B:F"].ColumnWidth = 20;
worksheet.Range["4:7"].RowHeight = 60;
worksheet.Range["A:A"].ColumnWidth = 5;
worksheet.Range["B2"].Value = "Code128";
worksheet.Range["B2:F2"].Merge(true);
worksheet.Range["B3:F3"].Value = new object[,]{
{"Name", "Number", "Defult", "Hidden Label", "Custom Label Font"}
};
worksheet.Range["B4:C7"].HorizontalAlignment = HorizontalAlignment.Center;
worksheet.Range["B4:C7"].VerticalAlignment = VerticalAlignment.Center;
worksheet.Range["B2:F3"].HorizontalAlignment = HorizontalAlignment.Center;
worksheet.Range["B2:F3"].VerticalAlignment = VerticalAlignment.Center;
worksheet.Range["B4:C7"].Value = new object[,]
 {
 {"Police", 911},
 {"Telephone Directory Assistance", 411},
 {"Non-emergency Municipal Services", 311},
 {"Travel Info Call 511", 511}
 };
worksheet.Range["B4:C6"].WrapText = true;
worksheet.Range["G6"].WrapText = true;
worksheet.PageSetup.Orientation = PageOrientation.Landscape;
worksheet.PageSetup.PrintGridlines = true;

Documents for Excel, .NET Edition 207

Copyright © 2021 GrapeCity, Inc. All rights reserved.

// Set formula
for (var i = 4; i < 8; i++)
{
 worksheet.Range["D" + i].Formula = "=BC_CODE128" + "(C" + i + ")";
 worksheet.Range["E" + i].Formula = "=BC_CODE128" + "(C" + i + ", , , false))";
 worksheet.Range["F" + i].Formula = "=BC_CODE128" + "(C" + i + ", , , true, \"top\",
\"B\",\"Arial\", \"normal\")";
}

// Save to a pdf file
workbook.Save("code128.pdf");

GS1-128
GS1-128 is a barcode that uses a series of application Identifiers in order to encode data. It makes use of the complete
ASCII character set while also using FNC1 character as the first character position. This barcode is especially used for
dates, batch numbers, weights and HIBC applications etc.

The below image displays GS1-128 barcode in a PDF document.

Formula definition

You can set GS1-128 in a worksheet using the following formula:

=BC_GS1_128(value, color, backgroudColor, showLabel, labelPosition, fontFamily, fontStyle, fontWeight,
fontTextDecoration, fontTextAlign, fontSize, quietZoneLeft, quietZoneRight, quietZoneTop, quietZoneBottom)

Parameter

Documents for Excel, .NET Edition 208

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Name Description

value A string that represents encode on the symbol of GS1-128.

color A color that represents the barcode color. The default value is 'rgb(0,0,0)'.

backgroundColor A color that represents the barcode backgroundcolor. The default value is 'rgb(255, 255, 255)'

showLabel Specifies whether to show label text when the barcode has label.

labelPosition ​A value that represents the label position when the label is shown.

fontFamily A string that represents the label text fontFamily. The default value is 'sans-serif'.

fontStyle A string that represents the label text fontStyle. The default value is 'normal'.

fontWeight A string that represents the label text fontWeight. The default value is 'normal'.

fontTextDecoration A string that represents the label text fontTextDecoration. The default value is 'none'.

fontTextAlign A string that represents the label text fontTextAlign. The default value is 'center'.

fontSize A string that represents the label text fontSize. The default value is '12px'.

quietZoneLeft A value that represents the size of left quiet zone.

quietZoneRight A value that represents the size of right quiet zone.

quietZoneTop A value that represents the size of top quiet zone.

quietZoneBottom A value that represents the size of bottom quiet zone.

Using Code

This example code sets GS1_128 in the worksheet.

C#

// Create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

// Set worksheet layout and data
IWorksheet worksheet = workbook.Worksheets[0];
worksheet.Range["B:F"].ColumnWidth = 20;
worksheet.Range["4:7"].RowHeight = 60;
worksheet.Range["A:A"].ColumnWidth = 5;
worksheet.Range["B2"].Value = "GS1128";
worksheet.Range["B2:F2"].Merge(true);
worksheet.Range["B3:F3"].Value = new object[,]{
 {"Name", "Number", "Defult", "Hidden Label", "Custom Label Font"}
};
worksheet.Range["B4:C7"].HorizontalAlignment = HorizontalAlignment.Center;
worksheet.Range["B4:C7"].VerticalAlignment = VerticalAlignment.Center;
worksheet.Range["B2:F3"].HorizontalAlignment = HorizontalAlignment.Center;
worksheet.Range["B2:F3"].VerticalAlignment = VerticalAlignment.Center;

Documents for Excel, .NET Edition 209

Copyright © 2021 GrapeCity, Inc. All rights reserved.

worksheet.Range["B4:C7"].Value = new object[,]
 {
 {"Police", 911},
 {"Telephone Directory Assistance", 411},
 {"Non-emergency Municipal Services", 311},
 {"Travel Info Call 511", 511}
 };
worksheet.Range["B4:C6"].WrapText = true;
worksheet.Range["G6"].WrapText = true;
worksheet.PageSetup.PrintGridlines = true;
worksheet.PageSetup.Orientation = PageOrientation.Landscape;

// Set formula
for (var i = 4; i < 8; i++)
{
 worksheet.Range["D" + i].Formula = "=BC_CODE128" + "(C" + i + ")";
 worksheet.Range["E" + i].Formula = "=BC_CODE128" + "(C" + i + ", , , false))";
 worksheet.Range["F" + i].Formula = "=BC_CODE128" + "(C" + i + ", , , true, \"top\",
\"Arial\", \"normal\")";
}

// Save to a pdf file
workbook.Save("gs1128.pdf");

Code49
Code 49 is a two dimensional, high-density stacked barcode with two to eight rows (having eight characters each). Each
row has a start code and a stop code. This barcode is especially used to encodes the complete ASCII character set.

The below image displays Code49 barcode in a PDF document.

Formula definition

You can set Code49 in a worksheet using the following formula:

=BC_CODE49(value, color, backgroudColor, showLabel, labelPosition, grouping, groupNo, fontFamily, fontStyle,

Documents for Excel, .NET Edition 210

Copyright © 2021 GrapeCity, Inc. All rights reserved.

fontWeight, fontTextDecoration, fontTextAlign, fontSize, quietZoneLeft, quietZoneRight, quietZoneTop, quietZoneBottom)

Parameter

Name Description

value A string that represents encode on the symbol of Code49.

color A color that represents the barcode color. The default value is 'rgb(0,0,0)'.

backgroundColor A color that represents the barcode backgroundcolor. The default value is 'rgb(255, 255, 255)'

showLabel Specifies whether to show label text when the barcode has label.

labelPosition ​A value that represents the label position when the label is shown.

grouping Specifies whether the symbol mode is Group Alphanimeric Mode. The default value is 'false'.

groupNo A value that represents the index of symbol in the group. The default value is '0'

fontFamily A string that represents the label text fontFamily. The default value is 'sans-serif'.

fontStyle A string that represents the label text fontStyle. The default value is 'normal'.

fontWeight A string that represents the label text fontWeight. The default value is 'normal'.

fontTextDecoration A string that represents the label text fontTextDecoration. The default value is 'none'.

fontTextAlign A string that represents the label text fontTextAlign. The default value is 'center'.

fontSize A string that represents the label text fontSize. The default value is '12px'.

quietZoneLeft A value that represents the size of left quiet zone.

quietZoneRight A value that represents the size of right quiet zone.

quietZoneTop A value that represents the size of top quiet zone.

quietZoneBottom A value that represents the size of bottom quiet zone.

Using Code

This example code sets Code49 in the worksheet.

C#

// Create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

// Set worksheet layout and data
IWorksheet worksheet = workbook.Worksheets[0];
worksheet.Range["B:C"].ColumnWidth = 10;
worksheet.Range["D:F"].ColumnWidth = 30;
worksheet.Range["4:5"].RowHeight = 80;
worksheet.Range["A:A"].ColumnWidth = 5;
worksheet.Range["B2"].Value = "Code49";

Documents for Excel, .NET Edition 211

Copyright © 2021 GrapeCity, Inc. All rights reserved.

worksheet.Range["B2:F2"].Merge(true);
worksheet.Range["B3:G3"].Value = new object[,]{
 {"Name", "Number", "Defult", "Customer Label Font", "Line Through Label"}
};
worksheet.Range["B4:C7"].HorizontalAlignment = HorizontalAlignment.Center;
worksheet.Range["B4:C7"].VerticalAlignment = VerticalAlignment.Center;
worksheet.Range["B2:F3"].HorizontalAlignment = HorizontalAlignment.Center;
worksheet.Range["B2:F3"].VerticalAlignment = VerticalAlignment.Center;
worksheet.Range["B4:C5"].Value = new object[,]
 {
 {"Police", "911"},
 {"Travel Info Call 511", "511"},
 };
worksheet.Range["B4:C6"].WrapText = true;
worksheet.Range["G6"].WrapText = true;
worksheet.PageSetup.PrintGridlines = true;
worksheet.PageSetup.Orientation = PageOrientation.Landscape;

// Set formula
for (var i = 4; i < 6; i++)
{
 var value = "CONCAT(B" + i + ", \": \",C" + i + ")";
 worksheet.Range["D" + i].Formula = "=BC_CODE49" + "(" + value + ")";
 worksheet.Range["E" + i].Formula = "=BC_CODE49" + "(" + value + ", , , true, \"top\",
false, 0, \"Arial\", \"normal\", 700)";
 worksheet.Range["F" + i].Formula = "=BC_CODE49" + "(" + value + ", , , , , , , , ,
700, \"line - through\", \"left\", \"24px\")";
}

// Save to a pdf file
workbook.Save("code49.pdf");

PDF417
PDF417 barcode is a popular high-density, two-dimensional barcode with symbology that possesses the capability to
encode up to 1108 bytes of information. This barcode comprises a stacked set of small barcodes and can encode up to 35
alphanumeric characters and 2,710 numeric characters. It is a stacked linear barcode format which is used in a variety of
applications such as transport, identification cards, and inventory management.

The below image displays PDF417 barcode in a PDF document.

Documents for Excel, .NET Edition 212

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Formula definition

You can set PDF417 in a worksheet using the following formula:

=BC_PDF417(value, color, backgroudColor, errorCorrectionLevel, rows, columns, compact, quietZoneLeft, quietZoneRight,
quietZoneTop, quietZoneBottom)

Parameter

Name Description

value A string that represents encode on the symbol of PDF417.

color A color that represents the barcode color. The default value is 'rgb(0,0,0)'.

backgroundColor A color that represents the barcode backgroundcolor. The default value is 'rgb(255, 255, 255)'

errorCorrectionLevel A string that represents the error correction level of PDF417. It has 'auto|0-8' values. The default
value is 'auto'.

rows A value that specifies the number of rows in the symbol. It has 'auto|3-90' values.The default value
is 'auto'.

columns A value that specifies the number of columns in the symbol. It has 'auto|1-30' values. The default
value is 'auto'.

compact Specifies whether it is a compact PDF417. The default value is 'false'.

quietZoneLeft A value that represents the size of left quiet zone.

quietZoneRight A value that represents the size of right quiet zone.

quietZoneTop A value that represents the size of top quiet zone.

quietZoneBottom A value that represents the size of bottom quiet zone.

Using Code

Documents for Excel, .NET Edition 213

Copyright © 2021 GrapeCity, Inc. All rights reserved.

This example code sets PDF417 in the worksheet.

C#

// Create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

// Set worksheet layout and data
IWorksheet worksheet = workbook.Worksheets[0];
worksheet.Range["B:C"].ColumnWidth = 12;
worksheet.Range["D:F"].ColumnWidth = 30;
worksheet.Range["4:7"].RowHeight = 60;
worksheet.Range["A:A"].ColumnWidth = 5;
worksheet.Range["B2"].Value = "PDF417";
worksheet.Range["B2:F2"].Merge(true);
worksheet.Range["B3:F3"].Value = new object[,]{
 {"Server", "Data", "Defult", "Customer Padding", "Customer Columns Count"}
};
worksheet.Range["B4:C7"].HorizontalAlignment = HorizontalAlignment.Center;
worksheet.Range["B4:C7"].VerticalAlignment = VerticalAlignment.Center;
worksheet.Range["B2:F3"].HorizontalAlignment = HorizontalAlignment.Center;
worksheet.Range["B2:F3"].VerticalAlignment = VerticalAlignment.Center;
worksheet.Range["B4:C7"].Value = new object[,]
 {
 {"Police", "911"},
 {"Telephone Directory Assistance", "411"},
 { "Non-emergency Municipal Services", "311"},
 {"Travel Info Call 511", "511"}
 };
worksheet.Range["B4:B7"].WrapText = true;
worksheet.PageSetup.Orientation = PageOrientation.Landscape;
worksheet.PageSetup.PrintGridlines = true;

// Set formula
for (var i = 4; i < 8; i++)
{
 var value = "CONCAT(B" + i + ",\":\",C" + i + ")";
 worksheet.Range["D" + i].Formula = "=BC_PDF417" + "(" + value + ")";
 worksheet.Range["E" + i].Formula = "=BC_PDF417" + "(" + value + ", , , , , , , 0, 10,
5, 5)";
 worksheet.Range["F" + i].Formula = "=BC_PDF417" + "(" + value + ", , , , , 5)";
}

// Save to a pdf file
workbook.Save("pdf417.pdf");

Documents for Excel, .NET Edition 214

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Data Matrix
DataMatrix barcode is a high density, two-dimensional barcode with square modules typically arranged in a square or a
rectangular matrix pattern. The most popular application for Data Matrix is marking small items, due to the code's ability
to encode fifty characters in a symbol that is readable at 2 or 3 mm2 and the fact that the code can be read with only a
20% contrast ratio.

The below image displays DataMatrix barcode in a PDF document.

Formula definition

You can set Datamatrix in a worksheet using the following formula:

=BC_DataMatrix(value, color, backgroudColor, eccMode, ecc200SymbolSize, ecc200EndcodingMode, ecc00_140Symbole,
structureAppend, structureNumber, fileIdentifier, quietZoneRight, quietZoneTop, quietZoneBottom)

Parameter

Name Description

value A string that represents encode on the symbol of Datamatrix.

color A color that represents the barcode color. The default value is 'rgb(0,0,0)'.

backgroundColor A color that represents the barcode backgroundcolor. The default value is 'rgb(255, 255, 255)'

eccMode A value that represents which ecc mode to use. It has the following values : 'ECC000, ECC050,
ECC080, ECC100, ECC140, ECC200'.

ecc200SymbolSize A value that specifies the size of the ECC200 symbol only. The default value is 'squareAuto'.

Documents for Excel, .NET Edition 215

Copyright © 2021 GrapeCity, Inc. All rights reserved.

ecc200EndcodingMode A value that specifies which encoding mode to use for the symbol. The default value is 'auto'.

ecc00_140Symbole A value that specifies the size of the ECC000-140 symbol only. The default value is 'auto'.

structureAppend Specifies whether the symbol is part of a structured append message ECC200 only.The default
value is 'false'.

structureNumber A value that represents which block the symbol is in the structured append message. It has
the value '0-15', only for ECC200. The default value is '0'.

fileIdentifier A value that specifies the file identification. It has values '1-254', only for ECC200. The default
value is '0'.

quietZoneRight A value that represents the size of right quiet zone.

quietZoneTop A value that represents the size of top quiet zone.

quietZoneBottom A value that represents the size of bottom quiet zone.

Using Code

This example creates a DataMatrix barcode.

C#

// Create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

// Set worksheet layout and data
IWorksheet worksheet = workbook.Worksheets[0];
worksheet.Range["B:F"].ColumnWidth = 15;
worksheet.Range["4:7"].RowHeight = 60;
worksheet.Range["A:A"].ColumnWidth = 5;
worksheet.Range["B2"].Value = "Data Matrix";
worksheet.Range["B2:F2"].Merge(true);
worksheet.Range["B3:F3"].Value = new object[,]{
 {"Server", "Data", "Defult", "ECC100", "ECC200"}
};
worksheet.Range["B4:C7"].HorizontalAlignment = HorizontalAlignment.Center;
worksheet.Range["B4:C7"].VerticalAlignment = VerticalAlignment.Center;
worksheet.Range["B2:F3"].HorizontalAlignment = HorizontalAlignment.Center;
worksheet.Range["B2:F3"].VerticalAlignment = VerticalAlignment.Center;
worksheet.Range["B4:C7"].Value = new object[,]
 {
 {"Police", "911"},
 {"Telephone Directory Assistance", "411"},
 { "Non-emergency Municipal Services", "311"},
 {"Travel Info Call 511", "511"}
 };
worksheet.Range["B4:B7"].WrapText = true;
worksheet.PageSetup.PrintGridlines = true;

Documents for Excel, .NET Edition 216

Copyright © 2021 GrapeCity, Inc. All rights reserved.

// Set formula
for (var i = 4; i < 8; i++)
{
 var value = "CONCAT(B" + i + ",\":\",C" + i + ")";
 worksheet.Range["D" + i].Formula = "=BC_DataMatrix" + "(" + value + ")";
 worksheet.Range["E" + i].Formula = "=BC_DataMatrix" + "(" + value + ", ,
,\"ECC000\")";
 worksheet.Range["F" + i].Formula = "=BC_DataMatrix" + "(" + value + ", ,
,\"ECC200\")";
}

// Save to a pdf file
workbook.Save("datamatrix.pdf");

Limitation

Datamatrix ECC (000-140) barcodes are obsolete. Hence, barcode generation with these specifications is
not scanned.

Theme
GcExcel .NET provides users with a set of built-in themes to enable them to change the overall appearance of the
workbook. Besides, it also allows users to create custom theme and apply it in order to set up a workbook as per their
own preferences and requirements.

When a theme is changed, it affects all areas including the theme font, theme color, range, chart title etc. For instance: if
you apply a built-in or a custom theme to your workbook, it is likely that the color of the range as well as the font will also
be changed in accordance to the modified theme.

The default theme of a workbook is the standard Office theme. In GcExcel, the current theme of a workbook is
represented by the ITheme interface.

To change the current theme of the workbook, you need to first get the existing theme using the indexer notation of the
Themes class.

Applying theme in a workbook involves the following tasks:

Apply built-in theme to the workbook
Add a custom theme and set to workbook

Apply built-in theme to the workbook

In order to enable you to maintain consistency in the appearance across all the worksheets in the workbook, GcExcel
offers a set of built-in themes for you to choose from.

Refer to the following example code to apply a built-in theme to the workbook.

C#

//Change workbook's theme to Berlin.
worksheet.Range["E10"].Value = "Test";
worksheet.Range["E10"].Font.ThemeColor = ThemeColor.Accent6;
worksheet.Range["E10"].Interior.ThemeColor = ThemeColor.Accent5;

Documents for Excel, .NET Edition 217

Copyright © 2021 GrapeCity, Inc. All rights reserved.

workbook.Theme = Themes.Berlin;

Add a custom theme and set to workbook

You can use the Theme object constructor in order to add a custom theme. After you add your custom theme, you can
apply it to your workbook.

Refer to the following example code to add a custom theme and apply it to the workbook.

C#

//Add custom theme

Theme theme = new Theme("testtheme"); // Base theme is office theme, if parameters are
not given

theme.ThemeColorScheme[ThemeColor.Light1].RGB = Color.AntiqueWhite;
theme.ThemeColorScheme[ThemeColor.Accent1].RGB = Color.AliceBlue;
theme.ThemeFontScheme.Major[FontLanguageIndex.Latin].Name = "Buxton Sketch";
theme.ThemeFontScheme.Minor[FontLanguageIndex.Latin].Name = "Segoe UI";
workbook.Theme = theme;

// Applying theme
worksheet.Range["E10"].Value = "CustomTest";
worksheet.Range["E10"].Font.ThemeColor = ThemeColor.Light1;
worksheet.Range["E10"].Interior.ThemeColor = ThemeColor.Accent1;

Chart
GcExcel .NET empowers users with the capability to graphically display information in charts so as to help business
analysts compare numbers, analyze patterns and visualize trends quickly and efficiently.

Documents for Excel, .NET Edition 218

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Working with charts involves the following tasks:

Create and Delete Chart
Configure Chart
Customize Chart Objects
Chart Types
Chart Sheet

Charts can also be exported to PDF documents. For more information, refer to Export Charts

Create and Delete Chart
GcExcel .NET allows users to create and delete chart in spreadsheets as per their requirements.

You can create and delete chart using the properties and methods of the IShapes Interface and the IChart interface

Create Chart

You can create chart in a worksheet by using the AddChart method of the IShapes interface.

Refer to the following example code to create a chart.

C#

Documents for Excel, .NET Edition 219

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 //Add Chart
IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
 {
 {null, "Revenue", "Profit", "Sales"},
 {"North", 10, 25, 25},
 {"East", 51, 36, 27},
 {"South", 52, 85, 30},
 {"West", 22, 65, 65}
 };
 shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

Delete Chart

You can delete an existing chart by using Delete method of the IChart interface.

Refer to the following example code to delete a chart from your spreadsheet.

C#

// Delete Chart
shape.Chart.Delete();

Configure Chart
In GcExcel .NET, you can configure a chart added to a spreadsheet in order to set up its display as per your preferences.

Following tasks can be performed while configuring a chart:

Chart Title
Chart Area
Plot Area

Chart Title
In GcExcel .NET, you can use the properties of the IChart Interface to set up the chart title as per your choice. When
working with chart title, you can perform the following tasks:

Set formula for chart title
Set format for chart title and font style
Set text angle for chart title

Set formula for chart title

Refer to the following example code to set formula for chart title.

C#

//Set formula for chart title.

Documents for Excel, .NET Edition 220

Copyright © 2021 GrapeCity, Inc. All rights reserved.

shape.Chart.HasTitle = true;
shape.Chart.ChartTitle.Formula = "=Sheet1!E1";
worksheet.Range["E1"].Value = "Sample Chart";

Set format for chart title and font style

Refer to the following example code to set format for chart title and font style.

C#

//Set chart title's format and font style.
shape.Chart.HasTitle = true;
//shape.Chart.ChartTitle.Text = "aaaaa";
shape.Chart.ChartTitle.Font.Bold = true;
shape.Chart.ChartTitle.Format.Fill.Color.RGB = Color.Red;
shape.Chart.ChartTitle.Format.Line.Color.RGB = Color.Blue;

Set text angle for chart title

You can also configure the text angle for chart title by using the Orientation property of IChartTitle interface. The text
angle can also be exported or imported to JSON.

Refer to the following example code to set text angle for chart title.

C#

//add chart title
shape.Chart.HasTitle = true;
shape.Chart.ChartTitle.Text = "MyChartTitle";

//config chart title angle
shape.Chart.ChartTitle.Orientation = 30;

Chart Area
In GcExcel .NET, you can use the properties of the IChartArea interface to set up the chart area as per your preferences.

Configure chart area style

You can configure the chart area style by changing its font, format and other attributes using the Font property, Format
property and RoundedCorners property of the IChartArea interface.

Refer to the following example code to configure chart area style in your worksheet.

C#

//Configure chart area style
IShape shape = worksheet.Shapes.AddChart(ChartType.Column3D, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]

Documents for Excel, .NET Edition 221

Copyright © 2021 GrapeCity, Inc. All rights reserved.

{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

IChartArea chartarea = shape.Chart.ChartArea;
//Format.
chartarea.Format.Fill.Color.RGB = Color.Gray;
chartarea.Format.Line.Color.RGB = Color.Gold;
chartarea.Format.ThreeD.RotationX = 60;
chartarea.Format.ThreeD.RotationY = 20;
chartarea.Format.ThreeD.RotationZ = 100;
chartarea.Format.ThreeD.Z = 20;
chartarea.Format.ThreeD.Perspective = 20;
chartarea.Format.ThreeD.Depth = 5;
//Font
chartarea.Font.Bold = true;
chartarea.Font.Italic = true;
chartarea.Font.Color.RGB = Color.Red;
//Rounded corners.
chartarea.RoundedCorners = true;

Plot Area
In GcExcel .NET, you can use the properties of the IPlotArea Interface to set up the plot area in a chart as per your
preferences.

Configure plot area format

You can configure the plot area format by changing its fill color, line color and other attributes using the Format
property of the IPlotArea interface.

Refer to the following example code to configure plot area format for a chart inserted in your worksheet.

C#

IShape shape = worksheet.Shapes.AddChart(ChartType.Column3D, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},

Documents for Excel, .NET Edition 222

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

IPlotArea plotarea = shape.Chart.PlotArea;
//Format.
plotarea.Format.Fill.Color.RGB = Color.Pink;
plotarea.Format.Line.Color.RGB = Color.Green;

Customize Chart Objects
In GcExcel .NET, the chart feature provides extensive support for creating various types of charts including both 2-D and
3-D views.

Chart objects are fully customizable. Shared below is a list of charting objects that can be modified in charts created using
GcExcel .NET:

1. Series
2. Walls
3. Axis and other Lines
4. Floor
5. Data Label
6. Legends

The following diagram displays a sample chart depicting the annual sales records of different electronic gadgets per
quarter along with the chart objects that can be customized in a worksheet.

Documents for Excel, .NET Edition 223

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Series
Series refers to a set of data points, or simply a list of values that are plotted in a chart.

In a spreadsheet, you can plot one or more data series while creating a chart. Each series is represented by an item on the
legend and provides access to the chart control's collection of series objects.

In GcExcel .NET, the SeriesCollection can be used to create chart series. The properties and methods of the ISeries
interface and the ISeriesCollection interface allows users to add individual series, access it, delete it and perform other
useful operations on it as per the requirements.

Refer to the following example code to add series in your chart.

C#

 // Adding charts
IShape shape1 = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 50, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
 {
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", 51, 36, 27},
 {"Item3", 52, 85, 30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};

Documents for Excel, .NET Edition 224

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 //Detects three series, B2:B6, C2:C6, D2:D6.
 //Does not detect out series labels and category labels, auto generated.
 shape1.Chart.SeriesCollection.Add(worksheet.Range["B2:D6"]);

 IShape shape2 = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 550, 50, 300,
300);
 //Detects three series, B2:B6, C2:C6, D2:D6.
 //Detects out series labels and category labels.
 //Series labels are "S1", "S2", "S3".
 //Category labels are "Item1", "Item2", "Item3", "Item4", "Item5".
 shape2.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"]);

 IShape shape3 = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 450, 300,
300);
 //Detects five series, B2:D2, B3:C3, B4:C4, B5:C5, B6:C6.
 //Does not detects out series labels and category labels, auto generated.
 shape3.Chart.SeriesCollection.Add(worksheet.Range["B2:D6"], RowCol.Rows);

 IShape shape4 = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 550, 450, 300,
300);
 //Detects three series, B2:B6, C2:C6, D2:D6
 //Does not detects out series labels and category labels, auto generated.
 shape4.Chart.SeriesCollection.Add(worksheet.Range["B2:D6"], RowCol.Columns);

 IShape shape5 = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 850, 450, 300,
300);
 //Detects three series, B2:B6, C2:C6, D2:D6
 //Detects out series labels and category labels.
 //Series labels are "S1", "S2", "S3".
 //Category labels are "Item1", "Item2", "Item3", "Item4", "Item5".
 shape5.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns);

 IShape shape6 = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 750, 300,
300);
 //Detects three series, B2:B6, C2:C6, D2:D6
 //Detects out series labels and category labels.
 //Series labels are "S1", "S2", "S3".
 //Category labels are "Item1", "Item2", "Item3", "Item4", "Item5".
 shape6.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true,
true);

 workbook.Worksheets.Add();
 IWorksheet worksheet1 = workbook.Worksheets[1];
 worksheet1.Range["A1:D6"].Value = new object[,]
 {
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},

Documents for Excel, .NET Edition 225

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
 };

 //Use ISeriesCollection.NewSeries() to add series
 IShape shape7 = worksheet1.Shapes.AddChart(ChartType.ColumnClustered, 200, 50, 300,
300);
 ISeries series1 = shape7.Chart.SeriesCollection.NewSeries();
 ISeries series2 = shape7.Chart.SeriesCollection.NewSeries();
 ISeries series3 = shape7.Chart.SeriesCollection.NewSeries();
 series1.Formula = "=SERIES(Sheet1!B1,Sheet1!A2:A6,Sheet1!B2:B6,1)";
 series2.Formula = "=SERIES(Sheet1!C1,Sheet1!A2:A6,Sheet1!C2:C6,2)";
 series3.Formula = "=SERIES(Sheet1!D1,Sheet1!A2:A6,Sheet1!D2:D6,3)";

 //Use ISeriesCollection.Extend(IRange source, RowCol rowcol, bool categoryLabels) to
add new data points to existing series
 IShape shape8 = worksheet1.Shapes.AddChart(ChartType.ColumnClustered, 200, 450, 300,
300);
 shape8.Chart.SeriesCollection.Add(worksheet1.Range["A1:D6"], RowCol.Columns, true,
true);
 worksheet1.Range["A12:D14"].Value = new object[,]
 {
 {"Item6", 50, 20, -30},
 {"Item7", 60, 50, 50},
 {"Item8", 35, 80, 60}
 };
 shape8.Chart.SeriesCollection.Extend(worksheet1.Range["A12:D14"], RowCol.Columns,
true);

 workbook.Worksheets.Add();
 IWorksheet worksheet2 = workbook.Worksheets[2];
 worksheet2.Range["A1:D6"].Value = new object[,]
 {
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
 };

 //Create a line chart, change one series's AxisGroup, change another one series's
chart type.
 IShape shape9 = worksheet2.Shapes.AddChart(ChartType.Line, 200, 50, 300, 300);
 shape9.Chart.SeriesCollection.Add(worksheet2.Range["A1:D6"], RowCol.Columns, true,
true);
 ISeries series4 = shape9.Chart.SeriesCollection[0];

Documents for Excel, .NET Edition 226

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 ISeries series5 = shape9.Chart.SeriesCollection[1];
 series4.AxisGroup = AxisGroup.Secondary;
 series5.ChartType = ChartType.ColumnClustered;

 //Set 3D column chart's bar shape.
 IShape shape10 = worksheet2.Shapes.AddChart(ChartType.Column3D, 200, 450, 300, 300);
 shape10.Chart.SeriesCollection.Add(worksheet2.Range["A1:D6"], RowCol.Columns, true,
true);
 ISeries series6 = shape10.Chart.SeriesCollection[0];
 ISeries series7 = shape10.Chart.SeriesCollection[1];
 ISeries series8 = shape10.Chart.SeriesCollection[2];
 series6.BarShape = BarShape.ConeToMax;
 series7.BarShape = BarShape.Cylinder;
 series8.BarShape = BarShape.PyramidToPoint;

 //Set negative point's fill color.
 IShape shape11 = worksheet2.Shapes.AddChart(ChartType.Column3D, 200, 800, 300, 300);
 shape11.Chart.SeriesCollection.Add(worksheet2.Range["A1:D6"], RowCol.Columns, true,
true);
 ISeries series9 = shape11.Chart.SeriesCollection[0];
 series9.InvertIfNegative = true;
 //Iussue to be escalated
 series9.InvertColor.RGB = Color.DarkOrange;

 //Set series' plot order.6
 IShape shape12 = worksheet2.Shapes.AddChart(ChartType.ColumnClustered, 200, 1100,
300, 300);
 worksheet.Range["A1:E6"].Value = new object[,]
 {
 {null, "S1", "S2", "S3", "S4"},
 {"Item1", 10, 25, 25, 30},
 {"Item2", -51, -36, 27, 35},
 {"Item3", 52, -85, -30, 40},
 {"Item4", 22, 65, 65, 45},
 {"Item5", 23, 69, 69, 50}
 };
 shape12.Chart.SeriesCollection.Add(worksheet2.Range["A1:E6"], RowCol.Columns, true,
true);

 ISeries series10 = shape12.Chart.SeriesCollection[0];
 ISeries series11 = shape12.Chart.SeriesCollection[1];
 ISeries series12 = shape12.Chart.SeriesCollection[2];
 ISeries series13 = shape12.Chart.SeriesCollection[3];

 //series11 and series13 plot on secondary axis.
 series11.AxisGroup = AxisGroup.Secondary;
 series13.AxisGroup = AxisGroup.Secondary;

Documents for Excel, .NET Edition 227

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 //series10 and series12 are in one chart group.
 series12.PlotOrder = 1;
 series10.PlotOrder = 2;

 //series4 and series2 are in one chart group.
 series13.PlotOrder = 1;
 series11.PlotOrder = 2;

 //Config series' marker.
 IShape shape13 = worksheet2.Shapes.AddChart(ChartType.Line, 200, 1450, 300, 300);
 shape13.Chart.SeriesCollection.Add(worksheet2.Range["A1:D6"], RowCol.Columns, true,
true);

 ISeries series14 = shape13.Chart.SeriesCollection[0];

 series14.MarkerStyle = MarkerStyle.Diamond;
 series14.MarkerSize = 10;
 series14.MarkerFormat.Fill.Color.RGB = Color.Red;
 series14.MarkerFormat.Line.Style = LineStyle.ThickThin;
 series14.MarkerFormat.Line.Color.RGB = Color.Green;
 series14.MarkerFormat.Line.Weight = 3;

Configure Chart Series
In GcExcel .NET, you can configure chart series using the following in your spreadsheet:

DataPoint
DataLabel
Trendline
ChartGroup
DropLine,HiLoLine and SeriesLine
Up-Down Bars

DataPoint

The Points collection in GcExcel .NET is used to represent all the points in a specific series and the indexer notation of the
IPoints interface to get a specific point in the series. Also, you can use the DataLabel property of the IPoint interface to
get data label of a specific point.

Set the format of DataPoint

Refer to the following example code to set data point format for the chart inserted in your worksheet.

C#

IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{

Documents for Excel, .NET Edition 228

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

ISeries series1 = shape.Chart.SeriesCollection[0];
ISeries series2 = shape.Chart.SeriesCollection[1];
ISeries series3 = shape.Chart.SeriesCollection[2];

series1.Format.Fill.Color.RGB = Color.Blue;
series1.Points[2].Format.Fill.Color.RGB = Color.Green;

Configure secondary section for pie of a pie chart

You can use the SecondaryPlot property of the IPoint interface to set if the point lies in the secondary section of either a
pie of pie chart or a bar of pie chart.

Refer to the following example code to configure secondary section for pie of a pie chart.

C#

IShape shape = worksheet.Shapes.AddChart(ChartType.PieOfPie, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

ISeries series1 = shape.Chart.SeriesCollection[0];
series1.HasDataLabels = true;

shape.Chart.ChartGroups[0].SplitType = ChartSplitType.SplitByCustomSplit;
series1.Points[0].SecondaryPlot = true;
series1.Points[1].SecondaryPlot = false;
series1.Points[2].SecondaryPlot = true;
series1.Points[3].SecondaryPlot = false;
series1.Points[4].SecondaryPlot = true;

DataLabel

The DataLabels collection in GcExcel .NET is used to represent the collection of all the data labels for the specified series.

Documents for Excel, .NET Edition 229

Copyright © 2021 GrapeCity, Inc. All rights reserved.

You can use the Font property and Format property of the IDataLabel interface to set font style, fill, line and 3-D
formatting for all the data labels of the specified series. You can also configure the layout of the data labels using other
properties of the IDataLabel interface.

Set all data labels and specific data label format for series

Refer to the following example code to set series' all data labels and specific data label format.

C#

IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

ISeries series1 = shape.Chart.SeriesCollection[0];
series1.HasDataLabels = true;

//set series1's all data label's format.
series1.DataLabels.Format.Fill.Color.RGB = Color.Green;
series1.DataLabels.Format.Line.Color.RGB = Color.Red;
series1.DataLabels.Format.Line.Weight = 3;

//set series1's specific data label's format.
series1.DataLabels[2].Format.Fill.Color.RGB = Color.Yellow;
series1.Points[2].DataLabel.Format.Line.Color.RGB = Color.Blue;
series1.Points[2].DataLabel.Format.Line.Weight = 5;

Customize data label text

Refer to the following example code to customize the text of the data label.

C#

IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};

Documents for Excel, .NET Edition 230

Copyright © 2021 GrapeCity, Inc. All rights reserved.

shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

ISeries series1 = shape.Chart.SeriesCollection[0];
series1.HasDataLabels = true;

//customize data lables' text.
series1.DataLabels.ShowCategoryName = true;
series1.DataLabels.ShowSeriesName = true;
series1.DataLabels.ShowLegendKey = true;

Trendline

The Trendlines collection in GcExcel .NET is used to represent a collection of trend lines for a specific series. You can use
the Add method of the ITrendlines interface to create a new trendline for a specific series. Also, you can use the indexer
notation of the ITrendlines interface to get a specific trend line.

Add trendline for series and configure its style

Refer to the following example code to add trendline for series and configure its style.

C#

IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

ISeries series1 = shape.Chart.SeriesCollection[0];
series1.Trendlines.Add();
series1.Trendlines[0].Type = TrendlineType.Linear;
series1.Trendlines[0].Forward = 5;
series1.Trendlines[0].Backward = 0.5;
series1.Trendlines[0].Intercept = 2.5;
series1.Trendlines[0].DisplayEquation = true;
series1.Trendlines[0].DisplayRSquared = true;

Add two trendlines for one series

Refer to the following example code to add two trendlines for one series.

C#

IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]

Documents for Excel, .NET Edition 231

Copyright © 2021 GrapeCity, Inc. All rights reserved.

{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

ISeries series1 = shape.Chart.SeriesCollection[0];
series1.Trendlines.Add();
series1.Trendlines[0].Type = TrendlineType.Linear;
series1.Trendlines[0].Forward = 5;
series1.Trendlines[0].Backward = 0.5;
series1.Trendlines[0].Intercept = 2.5;
series1.Trendlines[0].DisplayEquation = true;
series1.Trendlines[0].DisplayRSquared = true;

series1.Trendlines.Add();
series1.Trendlines[1].Type = TrendlineType.Polynomial;
series1.Trendlines[1].Order = 3;

Set trendline's name

You can also set the trendline's name in GcExcel using the Name property of ITrendline interface. The trendline's
name can also be exported to a PDF document.

Refer to the following example code to add trendline's name in GcExcel.

C#

// Initialize workbook
Workbook workbook = new Workbook();
// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

// Add a chart
IShape columnChart =
worksheet.Shapes.AddChart(GrapeCity.Documents.Excel.Drawing.ChartType.ColumnClustered,
300, 10, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
{null, "S1", "S2", "S3"},
{"Item1", 10, 25, 25},
{"Item2", -51, -36, 27},
{"Item3", 52, -85, -30},
{"Item4", 22, 65, 65},
{"Item5", 23, 69, 69}

Documents for Excel, .NET Edition 232

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 };

// Add series
columnChart.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true,
true);

// Get first series
ISeries series1 = columnChart.Chart.SeriesCollection[0];

// Add a trend line
ITrendline trendline = series1.Trendlines.Add();

// Set trend line's name
trendline.Name = "Theoretical data";

// Save to an excel file
workbook.Save("TrendLineName.xlsx");

Chart Group

Chart Group contains common settings for one or more series. Typically, it is a group of specific featured series.

Set varied colors for column chart with one series

Refer to the following example code to set different colors for a column chart which has only one series.

C#

IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

shape.Chart.SeriesCollection[2].Delete();
shape.Chart.SeriesCollection[1].Delete();
//Chart's series count is 1.
var count = shape.Chart.SeriesCollection.Count;
//set vary colors for column chart which only has one series.
shape.Chart.ColumnGroups[0].VaryByCategories = true;

Set split setting and gap width for pie of a pie chart

Refer to the following example code to set split setting and gap width for pie of a pie chart.

Documents for Excel, .NET Edition 233

Copyright © 2021 GrapeCity, Inc. All rights reserved.

C#

IShape shape = worksheet.Shapes.AddChart(ChartType.PieOfPie, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

ISeries series1 = shape.Chart.SeriesCollection[0];
series1.HasDataLabels = true;

shape.Chart.PieGroups[0].SplitType = ChartSplitType.SplitByValue;
shape.Chart.PieGroups[0].SplitValue = 20;
shape.Chart.PieGroups[0].GapWidth = 350;

Set gap width of column chart and overlap

Refer to the following example code in order to set the gap width of the column chart along with overlap.

C#

//Set column chart's gap width and overlap
IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

ISeries series1 = shape.Chart.SeriesCollection[0];
series1.HasDataLabels = true;

shape.Chart.ColumnGroups[0].GapWidth = 120;
shape.Chart.ColumnGroups[0].Overlap = -20;

Configure the layout of the bubble chart

Refer to the following example code to configure the layout of the bubble chart as per your preferences.

Documents for Excel, .NET Edition 234

Copyright © 2021 GrapeCity, Inc. All rights reserved.

C#

//Configure bubble chart's layout
IShape shape = worksheet.Shapes.AddChart(ChartType.Bubble, 250, 20, 360, 230);
worksheet.Range["A1:C10"].Value = new object[,]
 {
 {"Blue", null, null },
 {125, 750, 3 },
 {25, 625, 7 },
 {75, 875, 5 },
 {175, 625, 6},
 {"Red",null,null },
 {125 ,500 , 10 },
 {25, 250, 1 },
 {75, 125, 5 },
 {175, 250, 8 },
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A2:C5"], RowCol.Columns);
shape.Chart.SeriesCollection.Add(worksheet.Range["A7:C10"], RowCol.Columns);

ISeries series1 = shape.Chart.SeriesCollection[0];
series1.HasDataLabels = true;

shape.Chart.XYGroups[0].BubbleScale = 150;
shape.Chart.XYGroups[0].SizeRepresents = SizeRepresents.SizeIsArea;
shape.Chart.XYGroups[0].ShowNegativeBubbles = true;

Configure the layout of the doughnut chart

Refer to the following example code to configure the layout of the doughnut chart as per your preferences.

C#

IShape shape = worksheet.Shapes.AddChart(ChartType.Doughnut, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

ISeries series1 = shape.Chart.SeriesCollection[0];
series1.HasDataLabels = true;

shape.Chart.DoughnutGroups[0].FirstSliceAngle = 50;
shape.Chart.DoughnutGroups[0].DoughnutHoleSize = 20;

Documents for Excel, .NET Edition 235

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Dropline, HiLoline and SeriesLine

You can use the HasDropLines property, HasHiLoLines property, HasSeriesLines property, DropLines
property,HiLoLines property, SeriesLines property of the IChartGroup interface to configure Dropline, HiLoline and
Series lines in a chart.

Configure the drop lines of the line chart

Refer to the following example code to configure the drop lines of the line chart as per your preferences.

C#

IShape shape = worksheet.Shapes.AddChart(ChartType.Line, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

shape.Chart.LineGroups[0].HasDropLines = true;
shape.Chart.LineGroups[0].DropLines.Format.Line.Color.RGB = Color.Red;

Configure the high-low lines of the line chart

Refer to the following example code to configure the high-low lines of the line chart as per your preferences.

C#

IShape shape = worksheet.Shapes.AddChart(ChartType.Line, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

shape.Chart.LineGroups[0].HasHiLoLines = true;
shape.Chart.LineGroups[0].HiLoLines.Format.Line.Color.RGB = Color.Red;

Configure the series lines for column chart

Refer to the following example code to configure the column chart's series lines as per your preferences.

Documents for Excel, .NET Edition 236

Copyright © 2021 GrapeCity, Inc. All rights reserved.

C#

IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnStacked, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

shape.Chart.ColumnGroups[0].HasSeriesLines = true;
shape.Chart.ColumnGroups[0].SeriesLines.Format.Line.Color.RGB = Color.Red;

Configure the connector lines for pie of a pie chart

Refer to the following example code to configure the connector lines for pie of a pie chart as per your preferences.

C#

IShape shape = worksheet.Shapes.AddChart(ChartType.PieOfPie, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

shape.Chart.PieGroups[0].HasSeriesLines = true;
shape.Chart.PieGroups[0].SeriesLines.Format.Line.Color.RGB = Color.Red;

Up-Down Bars

You can use the HasUpDownBars property, DownBars property and UpBars property of the IChartGroup interface up-
down bars in a chart to configure the style of the up bars and the down bars as per your preferences.

Configure the up-down bars for the line chart

Refer to the following example code to configure the up-down bars for the line chart as per your preferences.

C#

IShape shape = worksheet.Shapes.AddChart(ChartType.Line, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]

Documents for Excel, .NET Edition 237

Copyright © 2021 GrapeCity, Inc. All rights reserved.

{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

shape.Chart.LineGroups[0].HasUpDownBars = true;
shape.Chart.LineGroups[0].UpBars.Format.Fill.Color.RGB = Color.Green;
shape.Chart.LineGroups[0].DownBars.Format.Fill.Color.RGB = Color.Red;

Error Bars
Error bars are used in charts to indicate the error or uncertainty of data. They act as an extremely useful tool for scientists, statisticians,
and research analysts to showcase data variability and measurement accuracy.

GcExcel allows you to configure error bars in charts using IErrorBar interface. The interface represents error bars in a chart series and
provides properties to configure various types, end styles and value types of error bars. The error bars can also be exported or imported
to JSON or a PDF document.

Supported Chart Types

The following chart types are supported while adding error bars in charts:

Area Charts
Bar Charts
Column charts
Line Charts
xyScatter Charts

Error Bar Types

Type Snapshot Description

Plus Error bar depicts only the positive values.

C#

series.YErrorBar.Type =
ErrorBarInclude.Plus;

Documents for Excel, .NET Edition 238

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Minus Error bar depicts only the negative values.

C#

series.YErrorBar.Type =
ErrorBarInclude.Minus;

Both Error bar depicts positive and negative
values at the same time

C#

series.YErrorBar.Type =
ErrorBarInclude.Both;

Error Bar End Styles

Type Snapshot Description

Cap Error bar displays caps at the end of error bar
lines.

C#

series.YErrorBar.EndStyle =
EndStyleCap.Cap;

Documents for Excel, .NET Edition 239

Copyright © 2021 GrapeCity, Inc. All rights reserved.

No
Cap

Error bar does not display caps at the end of
error bar lines.

C#

series.YErrorBar.EndStyle =
EndStyleCap.NoCap;

Error Bar Value Types

Type Snapshot Description

Fixed
Value

Error bar represents the error as an
absolute value.

C#

series1.YErrorBar.ValueType
= ErrorBarType.FixedValue;

Percentage Error bar represents the error as a
percentage of data value in the same
direction axis.

C#

series1.YErrorBar.ValueType
= ErrorBarType.Percentage;

Documents for Excel, .NET Edition 240

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Standard
Deviation

Error bar represents the error as a
calculating value which depends on
the set deviation and chart data
values.

C#

series1.YErrorBar.ValueType
= ErrorBarType.StDev;

Standard
Error

Error bar represents the error as a
calculating value which only depends
on the chart data values.

C#

series1.YErrorBar.ValueType
= ErrorBarType.StError;

Custom Error bar represents the error values
that are set with positive and negative
values respectively by formulas or
fixed values.

C#

series1.YErrorBar.ValueType
= ErrorBarType.Custom;

Note: In Custom value type, the array and reference formula string for plus or minus is supported. The final count of error bar
values is evaluated by the formula string (for example, "=Sheet1!B2:D2" or "={1,2,3}"). The error bar values are displayed based
on the total count of values:
If count = 1: all error bars have the same value.
If count < number of data points: the value of rest of the error bars is zero.

Documents for Excel, .NET Edition 241

Copyright © 2021 GrapeCity, Inc. All rights reserved.

If count > number of data points: the remaining values will do nothing.

Using Code

Refer to the following example code to add error bars using various properties.

C#

 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];
 // Prepare data for chart
 worksheet.Range["A1:D4"].Value = new object[,]
 {
{null, "Q1", "Q2", "Q3"},
{"Mobile Phones", 1330, 2345, 3493},
{"Laptops", 2032, 3632, 2197},
{"Tablets", 6233, 3270, 2030}
 };
 worksheet.Range["A:D"].Columns.AutoFit();
 // Add Column Chart
 IShape columnChartshape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 250, 20, 360,
230);

 // Adding series to SeriesCollection
 columnChartshape.Chart.SeriesCollection.Add(worksheet.Range["A1:D4"], RowCol.Columns, true,
true);

 // Get first series
 ISeries series1 = columnChartshape.Chart.SeriesCollection[0];

 //Config first series' properties
 series1.HasErrorBars = true;
 series1.YErrorBar.Type = ErrorBarInclude.Both;
 series1.YErrorBar.ValueType = ErrorBarType.Custom;
 series1.YErrorBar.EndStyle = EndStyleCap.Cap;
 series1.YErrorBar.Plus = "={200,400,600}";
 series1.YErrorBar.Minus = "={600,400,200}";

 // Get second series
 ISeries series2 = columnChartshape.Chart.SeriesCollection[1];

 //Config second series' properties
 series2.HasErrorBars = true;
 series2.YErrorBar.Type = ErrorBarInclude.Plus;
 series2.YErrorBar.ValueType = ErrorBarType.FixedValue;
 series2.YErrorBar.EndStyle = EndStyleCap.Cap;
 series2.YErrorBar.Amount = 1000;
 series2.YErrorBar.Format.Line.Color.RGB = Color.Red;
 series2.YErrorBar.Format.Line.Weight = 2;

Documents for Excel, .NET Edition 242

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 // Get last series
 ISeries series3 = columnChartshape.Chart.SeriesCollection[2];

 //Config last series' properties
 series3.HasErrorBars = true;
 series3.YErrorBar.Type = ErrorBarInclude.Both;
 series3.YErrorBar.ValueType = ErrorBarType.StError;
 series3.YErrorBar.EndStyle = EndStyleCap.NoCap;

 //save to an excel file
 workbook.Save("ErrorBar.xlsx");

Important Points

Only series in scatter chart groups can have x and y error bars. Otherwise, an exception would be thrown.
ISeries.HasErrorBars must be set as "true" to display error bar.
IErrorBar.Amount only takes effect when IErrorBar.ValueType is FixedValue or Percentage or Standard Deviation.
IErrorBar.Plus or IErrorBar.Minus only takes effect when IErrorBar.ValueType is Custom.
IErrorBar.Plus or IErrorBar.Minus accepts a formula string like "=Sheet1!B2:D2" or "={1,2,3}".

Limitation

There can be some difference between the exported PDF and Excel containing error bars. It is caused due to different ways of calculating
error bar value between GcExcel and Excel.

Walls
A wall refers to an area or a plane which is present behind, below or beside a chart.

GcExcel .NET enables users to set up a chart as per their custom preferences by defining the thickness, fill color, line
color and format of the back wall as well as the side wall, using the properties of the IWall Interface and the IChart
Interface.

Refer to the following example code to configure the walls of the chart inserted in a worksheet.

C#

//Config back wall and side wall's format together.
IShape shape1 = worksheet.Shapes.AddChart(ChartType.Column3D, 200, 50, 300, 300);
shape1.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);
shape1.Chart.Walls.Thickness = 20;
shape1.Chart.Walls.Format.Fill.Color.RGB = Color.Red;
shape1.Chart.Walls.Format.Line.Color.RGB = Color.Blue;

// Config back wall's format individually.
IShape shape2 = worksheet.Shapes.AddChart(ChartType.Column3D, 550, 50, 300, 300);
shape2.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);
shape2.Chart.BackWall.Thickness = 20;
shape2.Chart.BackWall.Format.Fill.Color.RGB = Color.Red;
shape2.Chart.BackWall.Format.Line.Color.RGB = Color.Blue;

Axis and Other Lines
Axis is one of the charting elements meant for displaying the scale for a single dimension of a plot area. In GcExcel .NET,
an axis in a chart can have a title, major tick mark, minor tick mark, tick mark labels, major gridlines and minor gridlines.

There are three types of axes in charts:

1. Category axis - Displays categories generally in the horizontal axis for all types of charts. An exception to this is the
bar chart, where categories are shown along the y-axis that is, the vertical axis.

2. Value axis - Displays series values in vertical axis. An exception to this is the bar chart, where series values are
shown along the x-axis that is, the horizontal axis.

3. Series axis - Displays data series for 3-dimensional charts including 3-D column chart, 3-D area chart, 3-D line
chart, and surface charts.

Typically, a two-dimensional chart is comprised of two axes - category axis and value axis. While the category axis is also
known as horizontal axis (x-axis) and is used to represent arguments, the value axis is also known as vertical axis (y-axis)
and it represents the data values for rows and columns in a worksheet. However, in a three-dimensional chart, there is one
more axis apart from the horizontal and vertical axis. This axis is known as the series axis.

You can use the properties of the IAxis Interface to configure category axis, value axis and series axis in a chart.

Refer to the following example code to configure axis in your chart.

C#

//Use IAxis.CategoryType to set category axis's scale type
IShape shape1 = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 50, 300, 300);

worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {new DateTime(2015, 10, 21), 10, 25, 25},
 {new DateTime(2016, 10, 25), -51, -36, 27},
 {new DateTime(2017, 12, 20), 52, -85, -30},
 {new DateTime(2018, 5, 5), 22, 65, 65},
 {new DateTime(2019, 10, 12), 23, 69, 69}
};

shape1.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);
worksheet.Range["A2:A6"].NumberFormat = "m/d/yyyy";
IAxis category_axis = shape1.Chart.Axes.Item(AxisType.Category);
category_axis.CategoryType = CategoryType.AutomaticScale;
//Category axis's category type is automatic scale.
var categorytype = category_axis.CategoryType;
//Category axis's actual category type is time scale.
var actualcategorytype = category_axis.ActualCategoryType;

workbook.Worksheets.Add();
IWorksheet worksheet1 = workbook.Worksheets[1];
worksheet1.Range["A1:D6"].Value = new object[,]

Documents for Excel, .NET Edition 243

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 {
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
 };
//Set Category axis and Value axis's format.
IShape shape2 = worksheet1.Shapes.AddChart(ChartType.ColumnClustered, 200, 50, 300,
300);
shape2.Chart.SeriesCollection.Add(worksheet1.Range["A1:D6"], RowCol.Columns, true,
true);
IAxis category_axis1 = shape2.Chart.Axes.Item(AxisType.Category);
IAxis value_axis = shape2.Chart.Axes.Item(AxisType.Value);
//set category axis's format.
category_axis1.Format.Line.Color.RGB = Color.Green;
category_axis1.Format.Line.Weight = 3;
category_axis1.Format.Line.Style = LineStyle.ThickBetweenThin;
//set value axis's format.
value_axis.Format.Line.Color.RGB = Color.Red;
value_axis.Format.Line.Weight = 8;
value_axis.Format.Line.Style = LineStyle.ThinThin;

//Config time scale category axis's units.
worksheet1.Range["A8:A12"].NumberFormat = "m/d/yyyy";
worksheet1.Range["A7:D12"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {new DateTime(2015, 10, 21), 10, 25, 25},
 {new DateTime(2016, 10, 25), -51, -36, 27},
 {new DateTime(2017, 12, 20), 52, -85, -30},
 {new DateTime(2018, 5, 5), 22, 65, 65},
 {new DateTime(2019, 10, 12), 23, 69, 69}
};
IShape shape3 = worksheet1.Shapes.AddChart(ChartType.ColumnClustered, 200, 450, 300,
300);
shape3.Chart.SeriesCollection.Add(worksheet1.Range["A7:D12"], RowCol.Columns, true,
true);
IAxis category_axis2 = shape3.Chart.Axes.Item(AxisType.Category);
category_axis2.MaximumScale = new DateTime(2019, 10, 1).ToOADate();
category_axis2.MinimumScale = new DateTime(2015, 10, 1).ToOADate();
category_axis2.BaseUnit = TimeUnit.Years;
category_axis2.MajorUnitScale = TimeUnit.Months;
category_axis2.MajorUnit = 4;
category_axis2.MinorUnitScale = TimeUnit.Days;
category_axis2.MinorUnit = 60;

Documents for Excel, .NET Edition 244

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//Config value axis's units.
IShape shape4 = worksheet1.Shapes.AddChart(ChartType.ColumnClustered, 200, 800, 300,
300);
shape4.Chart.SeriesCollection.Add(worksheet1.Range["A1:D6"], RowCol.Columns, true,
true);
IAxis category_axis3 = shape4.Chart.Axes.Item(AxisType.Category);
IAxis value_axis1 = shape4.Chart.Axes.Item(AxisType.Value);
value_axis1.MaximumScale = 150;
value_axis1.MinimumScale = 50;
value_axis1.MajorUnit = 20;
value_axis1.MinorUnit = 5;

//Set axis crosses at.
IShape shape5 = worksheet1.Shapes.AddChart(ChartType.ColumnClustered, 200, 1150, 300,
300);
shape5.Chart.SeriesCollection.Add(worksheet1.Range["A1:D6"], RowCol.Columns, true,
true);
IAxis value_axis2 = shape5.Chart.Axes.Item(AxisType.Value);
value_axis2.Crosses = AxisCrosses.Maximum;

//Set axis's scale type.
IShape shape6 = worksheet1.Shapes.AddChart(ChartType.ColumnClustered, 200, 1500, 300,
300);
shape6.Chart.SeriesCollection.Add(worksheet1.Range["A1:D6"], RowCol.Columns, true,
true);
IAxis value_axis3 = shape6.Chart.Axes.Item(AxisType.Value);
value_axis3.ScaleType = ScaleType.Logarithmic;
value_axis3.LogBase = 5;

//Set axis's tick mark.
IShape shape7 = worksheet1.Shapes.AddChart(ChartType.ColumnClustered, 200, 1850, 300,
300);
shape7.Chart.SeriesCollection.Add(worksheet1.Range["A1:D6"], RowCol.Columns, true,
true);
IAxis category_axis4 = shape7.Chart.Axes.Item(AxisType.Category);
category_axis4.Format.Line.Color.RGB = Color.Green;
category_axis4.MajorTickMark = TickMark.Inside;
category_axis4.MinorTickMark = TickMark.Cross;
category_axis4.TickMarkSpacing = 2;

Configure Chart Axis
In GcExcel .NET, you can configure chart axis using the following elements in your spreadsheet:

Axis title

Documents for Excel, .NET Edition 245

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Gridlines
Display unit label
Tick labels

Axis title

While configuring chart axis, you can set the style for the axis title as per your preferences by using the AxisTitle
property of the IAxis interface.

Refer to the following example code to configure axis title's layout.

C#

IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

IAxis category_axis = shape.Chart.Axes.Item(AxisType.Category);
IAxis value_axis = shape.Chart.Axes.Item(AxisType.Value);
category_axis.HasTitle = true;
category_axis.AxisTitle.Format.Fill.Color.RGB = Color.Pink;
category_axis.AxisTitle.Text = "aaaaaaaaaa";
category_axis.AxisTitle.Font.Size = 20;
category_axis.AxisTitle.Font.Color.RGB = Color.Green;
category_axis.AxisTitle.Font.Strikethrough = true;

Gridlines

While configuring the axis of a chart, you can also set the style of major and minor gridlines as per your choice using
the HasMajorGridlines property, HasMinorGridlines property, MajorGridlines property and MinorGridlines
property of the IAxis interface.

Refer to the following example code to set major and minor gridlines' style.

Display unit label

While configuring the chart axis in your worksheet, you can also set the display unit for the axis and configure its label
style using the DisplayUnit property, DisplayUnitLabel property and HasDisplayUnitLabel property of the IAxis
interface.

Refer to the following example code to set display unit for the axis and configure its label style.

C#

Documents for Excel, .NET Edition 246

Copyright © 2021 GrapeCity, Inc. All rights reserved.

IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

IAxis category_axis = shape.Chart.Axes.Item(AxisType.Category);
IAxis value_axis = shape.Chart.Axes.Item(AxisType.Value);
value_axis.DisplayUnit = DisplayUnit.Hundreds;
value_axis.HasDisplayUnitLabel = true;
value_axis.DisplayUnitLabel.Font.Color.RGB = Color.Green;
value_axis.DisplayUnitLabel.Font.Italic = true;
value_axis.DisplayUnitLabel.Format.Fill.Color.RGB = Color.Pink;
value_axis.DisplayUnitLabel.Format.Line.Color.RGB = Color.Red;

Tick labels

While configuring the axis of a chart, you can set the position and layout of the tick-mark labels as per your choice using
the TickLabelPosition property, TickLabels property, TickLabelSpacing property, TickLabelSpacingIsAuto
property and TickMarkSpacing property of the IAxis interface.

Refer to the following example code to configure the tick mark label's position and layout.

C#

IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

IAxis category_axis = shape.Chart.Axes.Item(AxisType.Category);
IAxis value_axis = shape.Chart.Axes.Item(AxisType.Value);

//tick-mark labels' fill will be green according to axis's format.
category_axis.Format.Fill.Color.RGB = Color.Green;

Documents for Excel, .NET Edition 247

Copyright © 2021 GrapeCity, Inc. All rights reserved.

category_axis.TickLabelPosition = TickLabelPosition.NextToAxis;
category_axis.TickLabelSpacing = 2;
category_axis.TickLabels.Font.Color.RGB = Color.Red;
category_axis.TickLabels.Font.Italic = true;
category_axis.TickLabels.NumberFormat = "#,##0.00";
category_axis.TickLabels.Offset = 100;

You can also configure the text angle of tick-mark labels by using the Orientation property of ITickLabels interface. The
text angle can also be exported or imported to JSON or PDF document.

Refer to the following example code to set the text angle of tick mark label.

C#

 //create a new workbook
 var workbook = new Workbook();

 IWorksheet worksheet = workbook.Worksheets[0];

 //add chart
 IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 250, 20, 360, 230);
 worksheet.Range["A1:D6"].Value = new object[,]
 {
{null, "S1", "S2", "S3"},
{1, -25, 25, 25},
{2, 51, 36, 27},
{3, 52, 80, 30},
{4, 22, -20, 65},
{5, 23, 69, 69}
 };
 shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);
 IAxis category_axis = shape.Chart.Axes.Item(AxisType.Category);

 //config tick label's angle
 category_axis.TickLabels.Orientation = 45;

 //save to an excel file
 workbook.Save("configtickmarklabelangle.xlsx");

Floor
Floor represents the floor of a three-dimensional chart. The area of a 3-D chart can be formatted using floor as the
charting object.

In GcExcel .NET, you can use the properties and methods of the IFloor interface to set the line and fill format of the floor
along with its thickness.

Documents for Excel, .NET Edition 248

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Refer to the following example code to configure the format of floor in a chart.

C#

//Configure floor's format.
IShape shape = worksheet.Shapes.AddChart(ChartType.Column3D, 200, 50, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

shape.Chart.Floor.Thickness = 20;
shape.Chart.Floor.Format.Fill.Color.RGB = Color.Red;
shape.Chart.Floor.Format.Line.Color.RGB = Color.Blue;

Data Label
GcExcel .NET allows you to insert data labels in a chart to ensure the information depicted in it can be easily interpreted
and visualized. You can add data labels in a chart using the properties and methods of the IPoint interface and the
ISeries interface.

Refer to the following example code to set data labels in a chart and customize the data label text.

C#

worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};

//Set Series' all data labels and specific data label's format.
IShape shape1 = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 50, 300, 300);
shape1.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);
ISeries series1 = shape1.Chart.SeriesCollection[0];
series1.HasDataLabels = true;
//set series1's all data label's format.
series1.DataLabels.Format.Fill.Color.RGB = Color.Green;
series1.DataLabels.Format.Line.Color.RGB = Color.Red;

Documents for Excel, .NET Edition 249

Copyright © 2021 GrapeCity, Inc. All rights reserved.

series1.DataLabels.Format.Line.Weight = 3;
//set series1's specific data label's format.
series1.DataLabels[2].Format.Fill.Color.RGB = Color.Yellow;
series1.Points[2].DataLabel.Format.Line.Color.RGB = Color.Blue;
series1.Points[2].DataLabel.Format.Line.Weight = 5;

//Customize data label's text.
IShape shape2 = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 550, 50, 300, 300);
shape2.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);
ISeries series2 = shape2.Chart.SeriesCollection[0];
series2.HasDataLabels = true;
//customize data lables' text.
series2.DataLabels.ShowCategoryName = true;
series2.DataLabels.ShowSeriesName = true;
series2.DataLabels.ShowLegendKey = true;

You can also configure the text angle for data labels by using the Orientation property of IDataLabel interface. The text
angle can also be exported or imported to JSON.

Refer to the following example code to set text angle for data label.

C#

 //create a new workbook
 var workbook = new GrapeCity.Documents.Excel.Workbook();

 IWorksheet worksheet = workbook.Worksheets[0];

 //add chart
 IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 250, 20, 360, 230);
 worksheet.Range["A1:B5"].Value = new object[,]
 {
{null, "S1"},
{"Item1", -20},
{"Item2", 30},
{"Item3", 50 },
{"Item3", 40 }
 };
 shape.Chart.SeriesCollection.Add(worksheet.Range["A1:B5"], RowCol.Columns, true, true);
 ISeries series1 = shape.Chart.SeriesCollection[0];
 series1.HasDataLabels = true;

 //set series1's all data labels' angle
 series1.DataLabels.Orientation = 45;

 //set series1's specific data label's angle
 series1.DataLabels[2].Orientation = -45;

Documents for Excel, .NET Edition 250

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 //save to an excel file
 workbook.Save("configdatalabelangle.xlsx");

Legends
In order to enable users to quickly interpret and understand the charted data, Legends (visual charting
elements) automatically appear in spreadsheets when you finish creating a chart.

Legends are also known as keys and are associated with the graphic data plotted on the chart. Usually, they are located at
the right side of the chart. From a wider perspective, they facilitate end users to determine series and series points
representing distinct data groups in a spreadsheet.

Typically, legends depict series names by listing and identifying the data points that belong to a particular series.
Corresponding to the data, each legend entry appearing on the worksheet can be shown with the help of a legend marker
along with the legend text that identifies it.

In GcExcel .NET, you can even customize the legend text, configure the position and layout of the legend, reset the font
style for the legend entries, delete legend and its entries as and when you want using the properties and methods of
the ILegend interface and the IChart interface.

Refer to the following example code to configure some useful legend settings in your chart.

C#

worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};

//Config legend's position and layout.
IShape shape = worksheet.Shapes.AddChart(ChartType.Column3D, 200, 50, 300, 300);
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);
shape.Chart.HasLegend = true;
ILegend legend = shape.Chart.Legend;
//position.
legend.Position = LegendPosition.Left;
//font.
legend.Font.Color.RGB = Color.Red;
legend.Font.Italic = true;
//format.
legend.Format.Fill.Color.RGB = Color.Pink;
legend.Format.Line.Color.RGB = Color.Blue;

//Config legend entry's font style.
ILegendEntry legendentry = legend.LegendEntries[0];

Documents for Excel, .NET Edition 251

Copyright © 2021 GrapeCity, Inc. All rights reserved.

legendentry.Font.Size = 20;
legendentry.Font.Italic = true;

Refer to the following example code if you want to delete the legend or a specific legend entry from your chart.

C#

//Delete legend.
IShape shape1 = worksheet.Shapes.AddChart(ChartType.Column3D, 200, 450, 300, 300);
shape1.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);
shape1.Chart.HasLegend = true;
ILegend legend1 = shape1.Chart.Legend;
legend1.Delete();

//Delete legend entry.
IShape shape2 = worksheet.Shapes.AddChart(ChartType.Column3D, 200, 800, 300, 300);
shape2.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);
shape2.Chart.HasLegend = true;
ILegend legend2 = shape2.Chart.Legend;
ILegendEntry legendentry2 = legend2.LegendEntries[0];
legendentry2.Delete();

Chart Types
GcExcel supports a wide range of chart types such as Area, Column, Line, Pie, Bar, Combo, Stock, Surface, Scatter, Radar,
Statistical and Specialized charts. It also supports new Excel 2016 statistical and specialized chart types like Sunburst,
Pareto, Treemap, Histogram, WaterFall, Box and Whisker, and Funnel. The new chart types represent and analyze
hierarchical data better than conventional charts.

This topic gives a quick snapshot of all major chart types and their use cases.

Chart Type Chart Snapshot Use Case

Area Charts

Area
Area3D
AreaStacked
AreaStacked100
AreaStacked1003D
AreaStacked3D

An Area chart is used to represent data that
follows a time-series relationship.This type of
chart is ideal when you need to show the plot
change over time and depict the total value
across a trend by showing the sum of the plotted
values.

Documents for Excel, .NET Edition 252

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Bar Charts

BarClustered
BarClustered3D
BarStacked
BarStacked100
BarStacked1003D
BarStacked3D

Bar charts are used for showing patterns and
trends across different categories. In these charts,
each horizontal bar corresponds to a category
and its length corresponds to the value or
measure of that category.

Column Charts

Column3D
ColumnClustered
ColumnClustered3D
ColumnStacked
ColumnStacked100
ColumnStacked1003D
ColumnStacked3D

Unlike bar charts, Column charts use vertical
columns/bars for representing data. These charts
are generally used to plot data easily on X-axis.

Combo Chart

Combo

The combo of two or more different charts can be
used in the same plot area to compare the
different data sets that are related to each other.

Line Charts

Line
Line3D
LineMarkers
LineMarkersStacked
LineMarkersStacked100
LineStacked
LineStacked100

Line charts are used to plot continuously
changing data against an interval of time. They
can also be used to plot data against other
continuous periodic values such as temperature,
distance, humidity, share price, earnings per share
etc.)

Pie Charts

Pie
Pie3D
PieExploded
PieExploded3D
PieOfPie
BarOfPie
Doughnut
DoughnutExploded

Pie charts are used to represent the relative
contribution of various categories.It is one of the
most commonly used charts and makes it easy to
compare proportions by displaying the
contribution of each value (slice) to a total (pie).

Chart Type Chart Snapshot Use Case

Documents for Excel, .NET Edition 253

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Stock Charts

StockHLC
StockOHLC
StockVHLC
StockVOHLC

A Stock chart is used to illustrate fluctuations in
data. It can represent fluctuations for stock, daily
rainfall, or annual temperatures. Typically, this
chart is ideal for analyzing financial data and
visualizing stock information.

Surface Charts

Surface
SurfaceTopView
SurfaceTopViewWireframe
SurfaceWireframe

Surface charts are used to find the optimum
combinations between two sets of data. As in a
topographic map, the colors and patterns
indicate the areas that are in the same range of
values.

XY (Scatter) Charts

XYScatter
XYScatterLines
XYScatterLinesNoMarkers
XYScatterSmooth
XYScatterSmoothNoMarkers
Bubble
Bubble3DEffect

An XY chart (also called scatter diagram) is a two-
dimensional chart that shows the relationship
between two variables. In a scatter graph, both
horizontal and vertical axes are value axes that
plot numeric data to show the correlation
between two variables.

Radar Charts

Radar
Radar Filled
Radar Markers

Radar charts are radial charts that help in
visualizing comparison of two or more groups of
values against various features or characteristics.
These charts represent each variable on a
separate axis, which are arranged radially at equal
distances from each other.

Statistical Charts

Box and Whisker
Histogram
Waterfall
Pareto

Statistical charts help summarize and add visual
meaning to key characteristics of data, including
range, distribution, mean and median. It can also
be used to in present and interpret statistical data
in graphical format.

Specialized Charts

Sunburst
Treemap
Funnel

Specialized chart types provided by GcExcel have
unique data representation to show hierarchies
and relationships. Such visual comparisons allow
users to analyze the data thoroughly.

Chart Type Chart Snapshot Use Case

Area Chart

Documents for Excel, .NET Edition 254

Copyright © 2021 GrapeCity, Inc. All rights reserved.

An Area Chart can be used to represent the change in one or more data quantities over time. It is similar to a line graph.
In area charts, the data points are plotted and connected by line segments. This helps in showing the magnitude of the
value at different times. Unlike in line charts, the area between the line and x-axis is filled with color or shading in area
charts.

GcExcel supports the following types of area charts.

Chart Type Chart Snapshot Use Case

Area Area chart is used to depict the data series as colored regions that
help in comparing the values of multiple series for the same data
point. This chart shows trends over time.

Aread3D Area3D chart is used to represent the chart demonstration in
3D, which is a modification of 2D Area chart. It does not have a third
dimension, it only looks volumetric in appearance.

AreaStacked AreaStacked chart is used to depict data series as stacked regions
with different colors that help in performing comparisons between
multiple series for the same data point. This chart shows the trend of
the contribution of each value over time or other categorical data.

AreaStacked100 AreaStacked100 chart is used to depict the series of data points with
positive and negative values shown over time to reveal values of
multiple series for the same data point. This chart shows the
percentage that each value contributes over time or other categorical
data.

AreaStacked1003D AreaStacked1003D is used to represent the AreaStacked100 chart in
3D, which looks volumetric in appearance.

AreaStacked3D AreaStacked3D chart is used to represent AreaStacked chart in
3D, which is a modification of the 2D Area chart.

Documents for Excel, .NET Edition 255

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Using Code

Refer to the following example code to add Area Stacked Chart:

C#

 public void AreaCharts()
 {
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];
 // Prepare data for chart
 worksheet.Range["A1:D4"].Value = new object[,]
{
 {null, "Q1", "Q2", "Q3"},
 {"Mobile Phones", 1330, 2345, 3493},
 {"Laptops", 2032, 3632, 2197},
 {"Tablets", 6233, 3270, 2030}
};
 worksheet.Range["A:D"].Columns.AutoFit();
 // Add Area Chart
 IShape areaChartShape = worksheet.Shapes.AddChart(ChartType.AreaStacked, 250, 20,
360, 230);

 // Adding series to SeriesCollection
 areaChartShape.Chart.SeriesCollection.Add(worksheet.Range["A1:D4"],
RowCol.Columns, true, true);

 // Configure Chart Title
 areaChartShape.Chart.ChartTitle.TextFrame.TextRange.Paragraphs.Add("Annual Sales
Record");

 // Saving workbook to Xlsx
 workbook.Save(@"18-AreaChart.xlsx", SaveFileFormat.Xlsx);
 }

Bar Chart
Bar charts compare categorical data through horizontal bars, where length of each bar represents the value of the
corresponding category. In bar charts, categories are organized along the vertical axis and data values along the
horizontal axis. For example, sales of various product categories can be presented through a bar chart.

GcExcel supports the following types of bar charts.

Documents for Excel, .NET Edition 256

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Chart Type Chart Snapshot Use Case

BarClustered BarClustered Chart can be used to display the comparisons of values
across different categories.

BarClustered3D BarClustered3D chart is used to display the chart demonstration in
3D,which is a modification of 2DBarClustered chart. It does not have a
third dimension, it only looks volumetric in appearance.

BarStacked BarStacked chart is used to display the relationship of each
item/category to the whole in two-dimensional and three-dimensional
rectangles.

BarStacked3D BarStacked3D chart is used to represent the BarStacked chart
demonstration in 3D,which looks volumetric in appearance.

BarStacked100 BarStacked100 chart is used to display the comparisons of percentage
that each of the values contribute to the total across different
categories.

BarStacked1003D BarStacked1003D chart is used to represent the BarStacked100 chart
demonstration in 3D, which is a modification of 2D chart in appearance.

Using Code

Refer to the following example code to add Bar Stacked Chart:

C#

 public void BarCharts()

Documents for Excel, .NET Edition 257

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 {
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];
 // Prepare data for chart
 worksheet.Range["A1:D4"].Value = new object[,]
{
 {null, "Q1", "Q2", "Q3"},
 {"Mobile Phones", 1330, 2345, 3493},
 {"Laptops", 2032, 3632, 2197},
 {"Tablets", 6233, 3270, 2030}
};
 worksheet.Range["A:D"].Columns.AutoFit();
 // Add BarStacked Chart
 IShape barChartshape = worksheet.Shapes.AddChart(ChartType.BarStacked, 250, 20,
360, 230);

 // Adding series to SeriesCollection
 barChartshape.Chart.SeriesCollection.Add(worksheet.Range["A1:D4"], RowCol.Columns,
true, true);

 // Configure Chart Title
 barChartshape.Chart.ChartTitle.TextFrame.TextRange.Paragraphs.Add("Annual Sales
Record");

 // Saving workbook to Xlsx
 workbook.Save(@"19-BarChart.xlsx", SaveFileFormat.Xlsx);
 }

Column Chart
Column charts are vertical versions of bar charts and use x-axis as a category axis. Column charts are preferred where
number of values is too large to be used on an x-axis, while bar charts are preferred where long category titles are difficult
to fit on an x-axis. For example, population share of different countries across the globe can be represented using a
column chart.

GcExcel supports the following types of column charts.

Chart Type Chart Snapshot Use Case

Column3D Column3D chart is used to display the chart demonstration in
3Dwhich is a modification of 2DColumn chart. It does not have a
third dimension, it only looks volumetric in appearance.

Documents for Excel, .NET Edition 258

Copyright © 2021 GrapeCity, Inc. All rights reserved.

ColumnClustered Column clustered chart is used to compare different values across
different categories and show them in two-dimensional or three-
dimensional vertical rectangles. This chart can be stacked normally
in a regular way just like any other chart.

ColumnClustered3D Column clustered chart to represent the ColumnClustered chart
demonstration in 3D, which looks volumetric in appearance.

ColumnStacked ColumnStacked chart is used to display the relationship of specific
items to the whole across different categories and plot values in
two-dimensional or three-dimensional vertical rectangles. This
chart stacks the data series vertically (in a vertical direction).

ColumnStacked100 ColumnStacked100 chart is used to perform comparisons of
percentages that each of the values are contributing to the total,
across all your categories in the spreadsheet. This chart stacks the
data series vertically and also equalizes the plotted values to meet
100%. The plotted values are displayed in two-dimensional and
three-dimensional rectangles.

ColumnStacked1003D ColumnStacked1003D is used to represent the ColumnStacked100
chart demonstration in 3D, which is a modification of 2D chart in
appearance.

ColumnStacked3D ColumnStacked3D chart is used to represent the ColumnStacked
chart demonstration in 3D, which looks volumetric in appearance.

Using Code

Refer to the following example code to add Column Stacked 3D Chart:

C#

 public void ColumnCharts()

Chart Type Chart Snapshot Use Case

Documents for Excel, .NET Edition 259

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 {
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];
 // Prepare data for chart
 worksheet.Range["A1:D4"].Value = new object[,]
{
 {null, "Q1", "Q2", "Q3"},
 {"Mobile Phones", 1330, 2345, 3493},
 {"Laptops", 2032, 3632, 2197},
 {"Tablets", 6233, 3270, 2030}
};
 worksheet.Range["A:D"].Columns.AutoFit();
 // Add Column Chart
 IShape columnChartshape = worksheet.Shapes.AddChart(ChartType.ColumnStacked3D,
250, 20, 360, 230);

 // Adding series to SeriesCollection
 columnChartshape.Chart.SeriesCollection.Add(worksheet.Range["A1:D4"],
RowCol.Columns, true, true);

 // Configure Chart Title
 columnChartshape.Chart.ChartTitle.TextFrame.TextRange.Paragraphs.Add("Annual Sales
Record");

 // Saving workbook to Xlsx
 workbook.Save(@"20-ColumnChart.xlsx", SaveFileFormat.Xlsx);
 }

Combo Chart
Combo chart is a combination of two or more chart types in a single plot area. For instance, a bar and line chart in a
single plot. Combination charts are best used to compare the different data sets that are related to each other, such as
actual and target values, total revenue and profit, temperature and precipitation etc. Note that these charts may require
multiple axes to cater different scales.

Chart
Type Chart Snapshot Use Case

Combo Combo chart can be used to interpret and understand different type of data that
is completely unrelated (for instance: price and volume) or to plot one or more
data series on the secondary axis.

Documents for Excel, .NET Edition 260

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Using Code

Refer to the following example code to add Combo Chart:

C#

 public void ComboCharts()
 {
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 // Prepare data for chart
 worksheet.Range["A1:C17"].Value = new object[,] {
 { "Mobile Phones", "Laptops", "Tablets" },
 { 1350, 120, 75 },
 { 1500, 90, 35 },
 { 1200, 80, 50 },
 { 1300, 80, 80 },
 { 1750, 90, 100 },
 { 1640, 120, 130 },
 { 1700, 120, 95 },
 { 1100, 90, 80 },
 { 1350, 120, 75 },
 { 1500, 90, 35 },
 { 1200, 80, 50 },
};
 worksheet.Range["A:C"].Columns.AutoFit();

 // Add Combination Chart
 IShape comboChartShape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 250,
20, 360, 230);
 // Adding series to SeriesCollection
 comboChartShape.Chart.SeriesCollection.Add(worksheet.Range["A1:C17"],
RowCol.Columns);

 // Configure Chart Title
 comboChartShape.Chart.ChartTitle.Text = "Annual Sales Record-Combination Chart";
 ISeries series1 = comboChartShape.Chart.SeriesCollection[0];
 ISeries series2 = comboChartShape.Chart.SeriesCollection[1];
 ISeries series3 = comboChartShape.Chart.SeriesCollection[2];

 //Change series type to make it Combination chart of different ChartTypes
 series1.ChartType = ChartType.Area;
 series2.ChartType = ChartType.ColumnStacked;
 series3.ChartType = ChartType.Line;

Documents for Excel, .NET Edition 261

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 //Set axis group
 series2.AxisGroup = AxisGroup.Secondary;
 series3.AxisGroup = AxisGroup.Secondary;

 //Configure axis scale and unit
 IAxis value_axis = comboChartShape.Chart.Axes.Item(AxisType.Value);
 IAxis value_second_axis = comboChartShape.Chart.Axes.Item(AxisType.Value,
AxisGroup.Secondary);
 value_axis.MaximumScale = 1800;
 value_axis.MajorUnit = 450;
 value_second_axis.MaximumScale = 300;
 value_second_axis.MajorUnit = 75;

 // Saving workbook to Xlsx
 workbook.Save("24-ComboChart.xlsx", SaveFileFormat.Xlsx);
 }

Line Chart
Line charts are the most basic charts that are created by connecting the data points with straight lines. These charts are
used to visualize a trend in data by comparing values against periodic intervals such as time, temperature etc. Some
examples that can be well depicted using line charts are closing prices of a stock in a given time frame and monthly
average sale of a product.

GcExcel supports the following types of line charts.

Chart Type Chart Snapshot Use Case

Line Line chart is used to depict the data values plotted over time
to display the trends. It shows continuous data over time on an
evenly scaled Axis.

Line3D Line3D chart is used to display the chart demonstration in
3D, which is a modification of 2D Line chart.

LineMarkers LineMarkers chart is used to display data values shown with
markers. It is ideal to use this chart when there are many
categories or approximate values.

Documents for Excel, .NET Edition 262

Copyright © 2021 GrapeCity, Inc. All rights reserved.

LineMarkersStacked LineMarkersStacked is used to display data values with
markers, typically showing the trend of contribution of each
value over time or evenly spaced categories.

LineMarkersStacked100 LineMarkersStacked100 chart is used to display individual data
values with markers, typically showing the trend of the
percentage each value that has been contributed over time or
evenly spaced categories. It is ideal to use this chart when
there are many categories or approximate values.

LineStacked LineStacked chart is used to display stacked line to depict the
trend of contribution of each data value or ordered category
over different time intervals.

LineStacked100 LineStacked100 chart is used to display displays trends in
terms of the percentage that each data value or ordered
category has contributed (to the whole) over different time
intervals.

Using Code

Refer to the following example code to add LineStacked100 chart:

C#

 public void LineCharts()
 {
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];
 // Prepare data for chart
 worksheet.Range["A1:D4"].Value = new object[,]
{
 {null, "Q1", "Q2", "Q3"},
 {"Mobile Phones", 1330, 2345, 3493},
 {"Laptops", 2032, 3632, 2197},
 {"Tablets", 6233, 3270, 2030}

Chart Type Chart Snapshot Use Case

Documents for Excel, .NET Edition 263

Copyright © 2021 GrapeCity, Inc. All rights reserved.

};
 worksheet.Range["A:D"].Columns.AutoFit();
 // Add Line Chart
 IShape lineChartshape = worksheet.Shapes.AddChart(ChartType.LineStacked100, 250,
20, 360, 230);

 // Adding series to SeriesCollection
 lineChartshape.Chart.SeriesCollection.Add(worksheet.Range["A1:D4"],
RowCol.Columns, true, true);

 // Configure Chart Title
 lineChartshape.Chart.ChartTitle.TextFrame.TextRange.Paragraphs.Add("Annual Sales
Record");

 // Saving workbook to Xlsx
 workbook.Save(@"21-LineChart.xlsx", SaveFileFormat.Xlsx);
 }

Pie Chart
Pie charts, the most common tools used for data visualization, are circular graphs that display the proportionate
contribution of each category, which is represented by a pie or a slice. The magnitude of the dependent variable is
proportional to the angle of the slice. These charts can be used for plotting just one series with non-zero and positive
values.

GcExcel supports the following types of pie charts.

Chart Type Chart Snapshot Use Case

Pie Pie chart is used to display a single data series in a circle-type
structure, with each sector representing a different category.

Pie3D Pie3D chart is used to display the chart demonstration in 3D which
is a modification of 2DPie chart in terms of appearance.

Documents for Excel, .NET Edition 264

Copyright © 2021 GrapeCity, Inc. All rights reserved.

PieExploded PieExploded chart is used to pull all of the slices out of a pie chart
and view the sectors separately in pieces.

PieExploded3D PieExploded 3D chart is used display the chart demonstration in
3D which is a modification of 2DPieExploded chart.

PieOfPie PieofPie chart is used to separate the slices from the main pie
chart and display them in an additional pie chart.

BarOfPie BarofPie chart is used to separate the slices from the main pie
chart and display them in an additional stacked bar chart.

Doughnut Doughnut chart is used to display multiple data series
concurrently, with each ring depicting a single data series.

DoughnutExploded DoughnutExploded is used to pull all slices out of a
DoughnutExploded chart and view the sectors separately in pieces.

Using Code

Refer to the following code to add Doughnut Exploded chart:

Chart Type Chart Snapshot Use Case

Documents for Excel, .NET Edition 265

Copyright © 2021 GrapeCity, Inc. All rights reserved.

C#

 public void PieCharts()
 {
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 // Prepare data for chart
 worksheet.Range["A1:D4"].Value = new object[,]
{
 {null, "Q1", "Q2", "Q3"},
 {"Mobile Phones", 1330, 2345, 3493},
 {"Laptops", 2032, 3632, 2197},
 {"Tablets", 6233, 3270, 2030}
};
 worksheet.Range["A:D"].Columns.AutoFit();
 // Add Pie Chart
 IShape pieChartshape = worksheet.Shapes.AddChart(ChartType.DoughnutExploded, 250,
20, 360, 230);

 // Adding series to SeriesCollection
 pieChartshape.Chart.SeriesCollection.Add(worksheet.Range["A1:D4"], RowCol.Columns,
true, true);

 // Configure Chart Title
 pieChartshape.Chart.ChartTitle.TextFrame.TextRange.Paragraphs.Add("Annual Sales
Record");

 // Saving workbook to Xlsx
 workbook.Save(@"22-PieChart.xlsx", SaveFileFormat.Xlsx);
 }

Stock Chart
Stock chart is used to illustrate fluctuations in data over a time. It can represent fluctuations in stock, rainfall, or annual
temperatures. The data arranged in columns or rows of a worksheet can be plotted in a Stock chart.

GcExcel supports the following types of Stock charts.

Documents for Excel, .NET Edition 266

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Chart Type Chart Snapshot Use Case

StockHLC A high-low-close chart displays the data values organized in the order:
high, low, close with the close value lying in between the high and low
values.

StockOHLC An open-high-low-close chart displays the data values organized in the
order: open, high, low and close.

StockVHLC A volume-high-low-close chart displays the data values organized in the
order: volume, high, low and close.

StockVOHLC A volume-open-high-low-close chart displays the data values organized
in the order : volume, open, high, low and close.

Using Code

Refer the following code to add StockVOHLC chart:

C#

 public void StockCharts()
 {
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 // Prepare data for chart
 worksheet.Range["A1:D17"].Value = new object[,] {
 { null, "High", "Low", "Close" },
 { new DateTime(2019, 9, 1), 105.76, 92.38, 100.94 },
 { new DateTime(2019, 9, 2), 102.45, 90.14, 93.45 },
 { new DateTime(2019, 9, 3),102.11, 85.01, 99.89 },

Documents for Excel, .NET Edition 267

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 { new DateTime(2019, 9, 4), 106.01, 94.04, 99.45 },
 { new DateTime(2019, 9, 5),108.23, 98.16, 104.33 },
 { new DateTime(2019, 9, 8),107.7, 91.02, 102.17 },
 { new DateTime(2019, 9, 9),110.36, 101.62, 110.07 },
 { new DateTime(2019, 9, 10),115.97, 106.89, 112.39 },
 { new DateTime(2019, 9, 11),120.32, 112.15, 117.52 },
 { new DateTime(2019, 9, 12),122.03, 114.67, 114.75 },
 { new DateTime(2019, 9, 15),120.46, 106.21, 116.85 },
 { new DateTime(2019, 9, 16),118.08, 113.55, 116.69 },
 { new DateTime(2019, 9, 17),128.23, 110.91, 117.25 },
 { new DateTime(2019, 9, 18),120.55, 108.09, 112.52 },
 { new DateTime(2019, 9, 19),112.58, 105.42, 109.12 },
 { new DateTime(2019, 9, 22),115.23, 97.25, 101.56 },

};
 worksheet.Range["A:D"].Columns.AutoFit();

 // Add Stock Chart
 IShape stockChartshape = worksheet.Shapes.AddChart(ChartType.StockVOHLC, 350, 20,
360, 230);

 // Adding series to SeriesCollection
 stockChartshape.Chart.SeriesCollection.Add(worksheet.Range["A1:D17"],
RowCol.Columns);

 // Configure Chart Title
 stockChartshape.Chart.ChartTitle.Text = "Market Data Analysis";

 // Configure value axis
 IAxis valueAxis = stockChartshape.Chart.Axes.Item(AxisType.Value);
 valueAxis.MinimumScale = 80;
 valueAxis.MaximumScale = 140;
 valueAxis.MajorUnit = 15;

 // Configure category axis
 IAxis categoryAxis = stockChartshape.Chart.Axes.Item(AxisType.Category);
 categoryAxis.CategoryType = CategoryType.CategoryScale;
 categoryAxis.MajorTickMark = TickMark.Outside;
 categoryAxis.TickLabelSpacingIsAuto = false;
 categoryAxis.TickLabelSpacing = 5;

 // Configure Close Series Style
 ISeries series_close = stockChartshape.Chart.SeriesCollection[2];
 series_close.MarkerStyle = MarkerStyle.Diamond;
 series_close.Has3DEffect = true;

 // Saving workbook to Xlsx
 workbook.Save("23-StockChart.xlsx", SaveFileFormat.Xlsx);

Documents for Excel, .NET Edition 268

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 }

Surface Chart
Surface charts are useful when you want to find the optimum combinations between two data sets. As in a topographic
map, the colors and patterns indicate the areas that are in the same range of values. A surface chart plots data on a three-
dimensional surface, in a similar way that topographic maps plots elevation. The colors and patterns represent values
within the same range. This chart type is especially useful for finding the optimum results when comparing two or more
sets of data.

GcExcel supports the following types of Surface charts.

Chart Type Chart Snapshot Purpose

Surface Surface chart is a chart with a 3-D visual effect.

SurfaceTopView SurfaceTopView chart depicts surface chart viewed from
above.

SurfaceTopViewWireframe SurfaceTopViewWireframe chart depicts surface chart
viewed from above with no fill color.

SurfaceWireframe SurfaceWireframe chart depicts surface chart with a 3-D
visual effect and no fill color.

Using Code

Refer to the following code to add SurfaceWireframe chart.

C#

 public void SurfaceCharts()

Documents for Excel, .NET Edition 269

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 {
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 // Prepare data for chart
 worksheet.Range["A1:D4"].Value = new object[,]
{
 {null, "Q1", "Q2", "Q3"},
 {"Mobile Phones", 1330, 2345, 3493},
 {"Laptops", 2032, 3632, 2197},
 {"Tablets", 6233, 3270, 2030}
};
 worksheet.Range["A:D"].Columns.AutoFit();
 // Add Surface Chart
 IShape surfaceChartShape = worksheet.Shapes.AddChart(ChartType.SurfaceWireframe,
250, 20, 360, 230);

 // Adding series to SeriesCollection
 surfaceChartShape.Chart.SeriesCollection.Add(worksheet.Range["A1:D4"],
RowCol.Columns, true, true);

 // Configure Chart Title
 surfaceChartShape.Chart.ChartTitle.TextFrame.TextRange.Paragraphs.Add("Annual
Sales Record");

 // Saving workbook to Xlsx
 workbook.Save(@"25-SurfaceChart.xlsx", SaveFileFormat.Xlsx);
 }

XY (Scatter) Chart
Scatter chart is used to illustrate relationships between individual items or categories. This chart is ideal for showing
comparisons for scientific, statistical and engineering data. The data arranged in columns or rows of a worksheet can be
plotted in a Scatter chart.

Unlike other charts, a scatter chart displays the actual values of the x and y variables in horizontal axis and vertical axis in
the plot area. Typically, this chart combines the x and y values into single data points and displays them at irregular
intervals. Also, this chart does not make use of the category axis because both horizontal axis (primary axis) and vertical
axes (secondary axis) are value axes.

GcExcel supports the following types of Scatter charts.

Documents for Excel, .NET Edition 270

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Chart Type Chart Snapshot Use Case

XYScatter A clustered Scatter chart displays the data points based on a
selected data range. This helps the users to analyze and
determine the relationship between x and y variables.

XYScatterLines A scatter chart with straight lines displays a straight
connecting line between data points in a particular series
without showing the individual points.

XYScatterLinesNoMarkers A scatter chart with straight lines and no data markers
displays a smooth curve that connects all the data points in
a particular series.

XYScatterSmooth A scatter chart with smooth lines displays a connecting line
between data points in a particular series without showing
the individual points.

XYScatterSmoothNoMarkers A scatter chart with smooth lines and no data markers
displays a smooth curve that connects all the data points in
a particular series.

Bubble A bubble chart is ideal for financial data analysis. It displays
the variations of a scatter chart where data points are
replaced with bubbles and a third dimension is represented
(Z axis) in the size of the bubbles. This chart plots z(size)
values as well as x values and y values. Typically, this chart
can be used when you want to plot three data series. The
size of the bubbles is determined by the values in the third
data series.

Bubble3DEffect Bubble3DEffect chart can be used to display the chart
demonstration in 3D,which is a modification of 2DBubble
chart. It does not have a third dimension, it only looks
volumetric in appearance.

Documents for Excel, .NET Edition 271

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Using Code

Refer to the following code to add a XY Scatter chart:

C#

public void ScatterCharts()
{
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 // Prepare data for chart
 worksheet.Range["A1:C22"].Value = new object[,] {
 { "Index", "Zantedeschia", "Celosia" },
 { 0, 0, 0 }, {1, 30, 10 }, {2, 50, 21 }, {3, 90, 35 },
 {4, 67, 7 }, {5, 59, 24 }, {6, 28, 6 }, {7, 78, 50 },
 {8, 90, 20 }, {9, 100, 40 }, {10, 45, 6 }, {11, 87, 20 },
 {12, 21, 5 }, {13, 45, 25 }, {14, 68, 63 }, {15, 98, 40 },
 {16, 23, 6 }, {17, 89, 20 }, {18, 13, 6 }, {19, 90, 9 }, {20, 100, 80 }
 };
 worksheet.Range["A:C"].Columns.AutoFit();
 // Add XYScatter Chart
 IShape xyScatterChartshape = worksheet.Shapes.AddChart(ChartType.XYScatter, 250, 20,
360, 230);

 // Adding series to SeriesCollection
 xyScatterChartshape.Chart.SeriesCollection.Add(worksheet.Range["B1:B22"],
RowCol.Columns);
 xyScatterChartshape.Chart.SeriesCollection.Add(worksheet.Range["C1:C22"],
RowCol.Columns);

 // Configure Chart Title
 xyScatterChartshape.Chart.ChartTitle.Text = "The Influence of Greenhouse Cultivation
on Different Flowers";

 // Configure Markers style
 ISeries series1 = xyScatterChartshape.Chart.SeriesCollection[0];
 series1.MarkerStyle = MarkerStyle.Diamond;
 series1.MarkerSize = 7;
 ISeries series2 = xyScatterChartshape.Chart.SeriesCollection[1];
 series2.MarkerStyle = MarkerStyle.Star;
 series2.MarkerSize = 7;

 // Saving workbook to Xlsx
 workbook.Save(@"26-ScatterChart.xlsx", SaveFileFormat.Xlsx);

Documents for Excel, .NET Edition 272

Copyright © 2021 GrapeCity, Inc. All rights reserved.

}

Radar Chart
A Radar chart is used to display circular visual representation of a 2-dimensional data. One can think of it as a circular XY
chart. These charts represent each variable on a separate axis, which are arranged radially at equal distances from each
other. Each of these axes share the same tick marks and scale. The data for each observation is plotted along these axis
and then joined to form a polygon. Radar charts are generally used for analyzing performance or comparing values such
as revenue and expense.

GcExcel supports the following types of radar charts.

Chart Type Chart Snapshot Use Case

Radar Radar chart type can be used to represent multivariate data plotted in
rows and columns in the graphical format.

RadarFilled RadarFilled chart type can be used to display radar chart with areas
highlighted by different colored regions for each value.

RadarMarkers RadarMarkers chart can be used to display radar chart with markers
representing data for each value along with areas highlighted by
different line colors.

Using Code

Refer to the following code to add RadarMarkers chart:

C#

 public void RadarCharts()
 {
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 // Prepare data for chart

Documents for Excel, .NET Edition 273

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 worksheet.Range["A1:D7"].Value = new object[,]
{
 {null, "Lisa", "Tim", "Jim"},
 {"Mathematics", 87, 64, 79},
 {"English", 79, 58, 78},
 {"History", 62, 70, 82},
 {"Biology", 85, 63, 54},
 {"Geography", 64, 85, 75},
 {"Zoology", 62, 79, 94}
};
 worksheet.Range["A:D"].Columns.AutoFit();
 // Add Radar Chart
 IShape radarChartShape = worksheet.Shapes.AddChart(ChartType.RadarMarkers, 250,
20, 360, 230);

 // Adding series to SeriesCollection
 radarChartShape.Chart.SeriesCollection.Add(worksheet.Range["A1:D7"],
RowCol.Columns, true, true);

 // Configure Chart Title
 radarChartShape.Chart.ChartTitle.TextFrame.TextRange.Paragraphs.Add("Test Score
Analysis");

 // Saving workbook to Xlsx
 workbook.Save(@"27-RadarChart.xlsx", SaveFileFormat.Xlsx);
 }

Statistical Chart
Statistical charts can be used to present and interpret statistical data in graphical format. GcExcel supports statistical
chart types like Box and Whisker, Histogram, Waterfall and Pareto. Such chart types add visual meaning to the
represented data.

GcExcel supports the following types of Statistical chart types:

Chart Type Chart Snapshot Use Case

Box&Whisker Box and Whisker charts are often used in Marketing Analysis, Statistical Analysis
and General Analysis.

Histogram Histogram is a common chart used in statistics. It can be used in scenarios, such
as analysis of distribution/sales of books in a book store.

Documents for Excel, .NET Edition 274

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Waterfall
Chart

Waterfall charts finds application in analyzing project gains including the
number of contracts carried forwarded each year, contracts cancelled, tasks
completed etc.

Pareto Chart Pareto charts graphically summarize the process problems in ranking order
from the most frequent to the least one.

Chart Type Chart Snapshot Use Case

Box Whisker
BoxWhisker charts are statistical charts that display the distribution of numerical data through quartiles, means and
outliers. As the name suggests, these values are represented using boxes and whiskers, where boxes show the range of
quartiles (lower quartile, upper quartile and median), while whiskers indicate the variability outside the upper and lower
quartiles. Any point outside the whiskers is said to be an outlier. These charts are useful for comparing distributions
between many groups or data sets. For instance, you can easily display the variation in monthly temperature of two cities.

Using Code

Refer to the following code to add Box and Whisker chart:

C#

 public void BoxWhiskerChart()
 {
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 // Prepare data for chart
 worksheet.Range["A1:D16"].Value = new object[,]
{
 {"Course", "SchoolA", "SchoolB", "SchoolC"},
 {"English", 78, 72, 45},
 {"Physics", 61, 55, 65},
 {"English", 63, 50, 65},
 {"Math", 62, 73, 83},
 {"English", 46, 64, 75},
 {"English", 58, 56, 67},
 {"Math", 60, 51, 67},

Documents for Excel, .NET Edition 275

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 {"Math", 62, 53, 66},
 {"English", 63, 54, 64},
 {"English", 90, 52, 67},
 {"Physics", 70, 82, 64},
 {"English", 60, 56, 67},
 {"Math", 73, 56, 75},
 {"Math", 63, 58, 74},
 {"English", 73, 84, 45}
};
 worksheet.Range["A:D"].Columns.AutoFit();
 //Add BoxWhisker chart
 IShape boxWhiskerChartshape = worksheet.Shapes.AddChart(ChartType.BoxWhisker,
300, 20, 300, 200);
 boxWhiskerChartshape.Chart.SeriesCollection.Add(worksheet.Range["A1:D16"]);

 // Configure Chart Title
 boxWhiskerChartshape.Chart.ChartTitle.Text = "Box & Whisker Chart";

 //Config value axis's scale
 IAxis value_axis = boxWhiskerChartshape.Chart.Axes.Item(AxisType.Value,
AxisGroup.Primary);
 value_axis.MinimumScale = 40;
 value_axis.MaximumScale = 70;

 //Configure the display of box&whisker plot
 ISeries series = boxWhiskerChartshape.Chart.SeriesCollection[0];
 series.ShowInnerPoints = true;
 series.ShowOutlierPoints = false;
 series.ShowMeanMarkers = false;
 series.ShowMeanLine = true;
 series.QuartileCalculationInclusiveMedian = true;

 // Saving workbook to Xlsx
 workbook.Save(@"28-BoxWhiskerChart.xlsx", SaveFileFormat.Xlsx);
 }

Histogram
Histograms are visual representation of data distribution over a continuous interval or certain time period. These charts
comprise vertical bars to indicate the frequency in each interval or bin created by dividing the raw data values into a series
of consecutive and non-overlapping intervals. Hence, histograms help in estimating the range where maximum values fall
as well as in knowing the extremes and gaps in data values, if there are any. For instance, histogram can help you find the
range of height in which maximum students of a particular age group fall.

Using Code

Refer to the following code to add a Histogram chart.

Documents for Excel, .NET Edition 276

Copyright © 2021 GrapeCity, Inc. All rights reserved.

C#

 public void HistogramChart()
 {
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 // Prepare data for chart
 worksheet.Range["A1:B11"].Value = new object[,]
{
 {"Complaint", "Count"},
 {"Too noisy", 27},
 {"Overpriced", 789},
 {"Food is tasteless", 65},
 {"Food is not fresh", 19},
 {"Food is too salty", 15},
 {"Not clean", 30},
 {"Unfriendly staff", 12},
 {"Wait time", 109},
 { "No atmosphere", 45},
 {"Small portions", 621 }
};
 worksheet.Range["A:B"].Columns.AutoFit();
 // Add Histogram Chart
 IShape histogramchartShape = worksheet.Shapes.AddChart(ChartType.Histogram, 300,
30, 300, 250);

 // Set range"A1:B11" as the histogram chart series
 histogramchartShape.Chart.SeriesCollection.Add(worksheet.Range["A1:B11"]);

 // Sets bins type by category
 histogramchartShape.Chart.ChartGroups[0].BinsType =
BinsType.BinsTypeCategorical;

 // Configure Chart Title
 histogramchartShape.Chart.ChartTitle.Text = "Histogram Chart";

 // Saving workbook to Xlsx
 workbook.Save(@"29-HistogramChart.xlsx", SaveFileFormat.Xlsx);
 }

Waterfall Chart
A waterfall chart shows the aggregate of values as they are added or subtracted.This type of chart is useful to
understand how the initial value is affected by a series of positive and negative values.Waterfall charts can be used for

Documents for Excel, .NET Edition 277

Copyright © 2021 GrapeCity, Inc. All rights reserved.

viewing fluctuations in product earnings, net income or profit analysis.

Using Code

Refer the following code for adding Waterfall chart.

C#

 public void WaterfallChart()
 {
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 // Prepare data for chart
 worksheet.Range["A1:B8"].Value = new object[,]
{
 {"Starting Amt", 130},
 {"Measurement 1", 25},
 {"Measurement 2", -75},
 {"Subtotal", 80},
 {"Measurement 3", 45},
 {"Measurement 4", -65},
 {"Measurement 5", 80},
 {"Total", 140}
};
 worksheet.Range["A:A"].Columns.AutoFit();

 // Add Waterfall Chart
 IShape waterfallChartShape = worksheet.Shapes.AddChart(ChartType.Waterfall, 300,
20, 300, 250);
 waterfallChartShape.Chart.SeriesCollection.Add(worksheet.Range["A1:B8"]);

 //Set subtotal & total points
 IPoints points = waterfallChartShape.Chart.SeriesCollection[0].Points;
 points[3].IsTotal = true;
 points[7].IsTotal = true;

 //Connector lines are not shown
 ISeries series = waterfallChartShape.Chart.SeriesCollection[0];
 series.ShowConnectorLines = false;

 // Configure Chart Title
 waterfallChartShape.Chart.ChartTitle.Text = "Waterfall Chart";

 // Saving workbook to Xlsx
 workbook.Save(@"30-WaterfallChart.xlsx", SaveFileFormat.Xlsx);
 }

Documents for Excel, .NET Edition 278

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Pareto Chart
GcExcel supports Pareto chart, also known as Pareto distribution diagram. It is a vertical bar graph in which values are
plotted left to right, in decreasing order of relative frequency. Pareto charts are useful for task prioritizing. The chart gives
a hint about the variables that have the greatest effect on a given system.

Pareto chart can be used to highlight the most important factor from a given set of factors. For example, quality control,
inventory control, and customer grievance handling are some areas where Pareto chart analysis can be used.

Using code

Refer the following code to add Pareto chart:

C#

 public void ParetoChart()
 {
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 // Prepare data for chart
 worksheet.Range["A1:B11"].Value = new object[,]
{
 {"Complaint", "Count"},
 {"Too noisy", 27},
 {"Overpriced", 789},
 {"Food is tasteless", 65},
 {"Food is not fresh", 19},
 {"Food is too salty", 15},
 {"Not clean", 30},
 {"Unfriendly staff", 12},
 {"Wait time", 109},
 { "No atmosphere", 45},
 {"Small portions", 621 }
};
 worksheet.Range["A:B"].Columns.AutoFit();
 // Add Pareto Chart
 IShape paretochartShape = worksheet.Shapes.AddChart(ChartType.Pareto, 300, 30,
300, 250);

 // Set range"A1:B11" as the pareto chart series
 paretochartShape.Chart.SeriesCollection.Add(worksheet.Range["A1:B11"]);

 // Configure Chart Title
 paretochartShape.Chart.ChartTitle.Text = "Pareto Chart";

Documents for Excel, .NET Edition 279

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 // Saving workbook to Xlsx
 workbook.Save(@"31-ParetoChart.xlsx", SaveFileFormat.Xlsx);
 }

Specialized Chart
GcExcel supports the following types of Specialized chart types such as Sunburst, Treemap and Funnel. The following table
covers the different specialized chart types, chart snapshots and their use-cases.

Chart
Type Chart Snapshot Use Case

Sunburst Sunburst charts can be used to break down data into different entities for
identifying and visualizing multilevel parent child relationships in different business
scenarios quickly and efficiently.

Treemap Treemap charts can be used to display large amount of hierarchical data without
any space constraints. You can plot more than tens of thousands of data points.

Funnel Funnel charts help in visualizing the sequential stages in a linear process such as
recruitment process, order fulfillment cycles and promotional campaigns.

Sunburst
Sunburst, also known as a multi-level pie chart, is ideal for visualizing multi-level hierarchical data depicted by concentric
circles. The circle in the center represents the root node surrounded by the rings representing different levels of hierarchy.
Rings are divided based on their relationship with the parent slice with each of them either divided equally or proportional
to a value. This type of chart helps users in breaking down data into different entities for identifying and visualizing
multilevel parent child relationships in different business scenarios quickly and efficiently.

Using Code

Refer to the following code to add a Sunburst chart:

C#

Documents for Excel, .NET Edition 280

Copyright © 2021 GrapeCity, Inc. All rights reserved.

public void SunburstChart()
{
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 // Prepare data for chart
 worksheet.Range["A1:D16"].Value = new object[,]
 {
 {"Region", "Subregion", "Country", "Population"},
 {"Asia", "Southern", "India", 1354051854},
 {null, null, "Pakistan", 200813818},
 {null,null , "Bangladesh", 166368149},
 {null,null , "Others", 170220300},
 {null, "Eastern", "China", 1415045928},
 {null, null, "Japan", 127185332},
 {null,null , "Others", 111652273},
 {null, "South-Eastern", null, 655636576},
 {null, "Western", null, 272298399},
 {null, "Central", null, 71860465},
 {"Africa", "Eastern",null , 433643132},
 {null, "Western",null , 381980688},
 {null, "Northern", null, 237784677},
 {null, "Others",null , 234512021},
 {"Europe", null, null, 742648010},
 {"Others",null ,null , 1057117703}
};
 worksheet.Range["A:D"].Columns.AutoFit();
 // Add Sunburst Chart
 IShape sunburstChartShape = worksheet.Shapes.AddChart(ChartType.Sunburst, 250, 20,
360, 330);

 // Adding series to SeriesCollection
 sunburstChartShape.Chart.SeriesCollection.Add(worksheet.Range["A1:D16"],
RowCol.Columns, true, true);

 // Configure Chart Title
 sunburstChartShape.Chart.ChartTitle.Text = "World Population";

 // Saving workbook to Xlsx
 workbook.Save(@"32-SunburstChart.xlsx", SaveFileFormat.Xlsx);
}

TreeMap
TreeMap is a chart type used to display hierarchical data as a set of nested rectangles. Treemap charts are used to

Documents for Excel, .NET Edition 281

Copyright © 2021 GrapeCity, Inc. All rights reserved.

represent hierarchical data in a tree-like structure. Data, organized as branches and sub-branches, is depicted with the
help of rectangles. With Treemap charts, you can easily drill down huge data to an unlimited number of levels.

Using Code

Refer to the following code to add Treemap chart:

C#

public void TreemapChart()
{
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 // Prepare data for chart
 worksheet.Range["A1:D16"].Value = new object[,]
 {
 {"Region", "Subregion", "Country", "Population"},
 {"Asia", "Southern", "India", 1354051854},
 {null, null, "Pakistan", 200813818},
 {null,null , "Bangladesh", 166368149},
 {null,null , "Others", 170220300},
 {null, "Eastern", "China", 1415045928},
 {null, null, "Japan", 127185332},
 {null,null , "Others", 111652273},
 {null, "South-Eastern", null, 655636576},
 {null, "Western", null, 272298399},
 {null, "Central", null, 71860465},
 {"Africa", "Eastern",null , 433643132},
 {null, "Western",null , 381980688},
 {null, "Northern", null, 237784677},
 {null, "Others",null , 234512021},
 {"Europe", null, null, 742648010},
 {"Others",null ,null , 1057117703}
};
 worksheet.Range["A:D"].Columns.AutoFit();
 // Add Treemap Chart
 IShape treeMapChartShape = worksheet.Shapes.AddChart(ChartType.Treemap, 250, 20,
360, 330);

 // Adding series to SeriesCollection
 treeMapChartShape.Chart.SeriesCollection.Add(worksheet.Range["A1:D16"],
RowCol.Columns, true, true);

 // Configure Chart Title
 treeMapChartShape.Chart.ChartTitle.Text = "World Population";

Documents for Excel, .NET Edition 282

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 // Saving workbook to Xlsx
 workbook.Save(@"33-TreemapChart.xlsx", SaveFileFormat.Xlsx);
}

Funnel
Funnel charts help in visualizing sequential stages in a linear process such as order fulfillment. In such processes, each
stage represents a proportion (percentage) of the total. Therefore, the chart takes the funnel shape with the first stage
being the largest and each subsequent stage smaller than the predecessor. The Funnel charts can be used to represent
stages in a sales process and represent the amount of potential revenue for each stage. This type of chart is useful in
finding potential problem areas in an organization's sales processes. For instance, with Funnel charts, a user can plot the
order fulfillment process that tracks number of orders getting across a stage.

Using Code

Refer to the following code to add a Funnel chart:

C#

 public void FunnelChart()
 {
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 // Prepare data for chart
 worksheet.Range["A1:B9"].Value = new object[,]
{
 {null, "Sales"},
 {"Consultation", 140000},
 {"Prospects", 120000},
 {"Qualified", 100000},
 {"Negotiations", 80000},
 {"Prototype", 60000},
 {"Closing", 40000},
 {"Won", 20000},
 {"Finalized", 10000}
};
 worksheet.Range["A:B"].Columns.AutoFit();

 // Add Funnel Chart
 IShape funnelChartshape = worksheet.Shapes.AddChart(ChartType.Funnel, 300, 20,
300, 200);
 funnelChartshape.Chart.SeriesCollection.Add(worksheet.Range["A1:B9"]);

 // Configure Chart Title
 funnelChartshape.Chart.ChartTitle.Text = "Sales Pipeline";

Documents for Excel, .NET Edition 283

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 // Configure Axis
 IAxis axis = funnelChartshape.Chart.Axes.Item(AxisType.Category,
AxisGroup.Primary);
 axis.Visible = true;

 // Saving workbook to Xlsx
 workbook.Save(@"34-FunnelChart.xlsx", SaveFileFormat.Xlsx);
 }

Chart Sheet
Sometimes, users find it difficult to accommodate both data and charts in the same worksheet. For this reason, GcExcel
now lets users add the chart to a separate sheet, called the 'Chart sheet'. Unlike Worksheets, Chart sheets can contain only
the chart. This helps avoid the usual clutter of data and embedded charts in the same worksheet. Also, using chart sheets,
users will be able to read the chart in detail and change the sheet page orientation while printing.

A Chart sheet can be created in a Workbook using the IWorksheets.Add(SheetType.Chart) method. Further, you can
add a chart to the Chart sheet by using IShapes.AddChart method. The user may note that each chart sheet should have
a chart, else it can throw an exception while saving the file.

The methods and properties associated with chart sheets in GcExcel are listed in the table below:

Methods/Properties Description

Add(SheetType.Chart) The Add method in IWorksheets interface has an overload with
'SheetType'. Hence, for adding a Chart sheet, you need to use SheetType.Chart.

AddChart The AddChart method in IShapes interface adds a chart for the Chart sheet.

Note: Each Chart sheet should have a chart. Otherwise, it will throw an
exception while saving the file.

AddShape The AddShape method in IChart interface adds multiple shapes for the Chart
sheet. Supported shapes are chart, picture, connector etc. In this case, the first chart
is the main Chart, and the other shapes will be discarded when saving the file.

SheetType The SheetType Property in IWorksheet interface gets the type of current sheet
(Worksheet or Chart sheet).

Delete The Delete method in IShape interface deletes the Chart from the Chart sheet, or
deletes the shape from the Chart.

Copy The Copy method in IWorksheet interface copies a new Chart sheet.

Move The Move method in IWorksheet interface moves the chart sheet to a new
location in the current workbook or a new workbook.

The following sections discuss in detail about chart sheet operations in a workbook.

Add Chart Sheet

Documents for Excel, .NET Edition 284

Copyright © 2021 GrapeCity, Inc. All rights reserved.

To add a chart sheet, refer the following code:

C#

public Workbook AddChartSheet()
{
 Workbook workbook = new Workbook();
 IWorksheet worksheet = workbook.Worksheets[0];

 worksheet.Range["A1:E5"].Value = new object[,]
 {
 {"Region", "Q1", "Q2","Q3","Q4"},
 {"North", 100, 300, 200, 600},
 {"East", 400, 200, 500, 800},
 {"South", 300, 500, 100, 400},
 {"West", 400, 200, 600, 100},
 };

 //Add a Chart Sheet
 IWorksheet chartSheet = workbook.Worksheets.Add(SheetType.Chart);

 //Add the main chart for the chart sheet
 IShape mainChart = chartSheet.Shapes.AddChart(ChartType.ColumnClustered, 100, 100,
200, 200);
 mainChart.Chart.ChartTitle.Text = "Sales 2018-2019";
 mainChart.Chart.SeriesCollection.Add(worksheet.Range["A1:E5"]);

 //Add a user shape for the main chart.
 IShape shape = mainChart.Chart.AddShape(AutoShapeType.Rectangle, 50, 20, 100, 100);
 shape.TextFrame.TextRange.Add("This chart displays the regional quarterly sales for
the year 2018-2019");

 //Save Workbook
 workbook.Save("Chartsheet.xlsx");

 return workbook;
}

Copy and Move Chart Sheet

To copy and move a chart sheet, refer the following example code:

C#

public void CopyMoveChartSheet()
{
 Workbook workbook = AddChartSheet();

 //Add additional worksheets

Documents for Excel, .NET Edition 285

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 workbook.Worksheets.Add(SheetType.Worksheet);
 workbook.Worksheets.Add(SheetType.Worksheet);

 //Access ChartSheet
 IWorksheet chartSheet = workbook.Worksheets[1];

 //Copies the chart sheet to the end of the workbook and save it.
 chartSheet.Copy();
 workbook.Save("CopyChartsheet.xlsx");

 //Moves the chart sheet to the end of the workbook and save it.
 chartSheet.Move();
 workbook.Save("MoveChartsheet.xlsx");
}

Delete Chart Sheet

To delete a chart sheet, refer the following example code:

C#

public void DeleteChartSheet()
{
 Workbook workbook = AddChartSheet();

 //Access ChartSheet
 IWorksheet chartSheet = workbook.Worksheets[1];

 //Deletes the chart sheet
 chartSheet.Delete();

 //Save Workbook
 workbook.Save("NoChartsheet.xlsx");
}

Table
Tabular data is easy to read, interpret, visualize and manage.

GcExcel .NET supports the use of tables in worksheets by enabling users to perform different tasks on a table that help
them in handling large chunks of data quickly and efficiently. Typically, a table consists of rows and columns that can be
formatted and managed independently in a worksheet.

In GcExcel .NET, you can use table in the following ways:

Create and Delete Tables
Modify Tables
Table Sort
Table Filters

Documents for Excel, .NET Edition 286

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Add and Delete Table Columns and Rows
Table Style

Create and Delete Tables
In GcExcel .NET, you can create and delete tables in spreadsheets using the Add method of the ITables interface and
the Delete Method of the ITable Interface, or simply transform a cell range into a table by specifying the existing data
lying in a worksheet.

Refer to the following example code to create and delete tables in a worksheet.

C#

//Create workbook and access its first worksheet
Workbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];
//Add first table
ITable table1 = worksheet.Tables.Add(worksheet.Range["A1:E5"], true);
//Add second table
ITable table2 = worksheet.Tables.Add(worksheet.Range["F1:G5"], true);
//Delete second Table
worksheet.Tables[1].Delete();

Modify Tables
While working with tables in GcExcel .NET, you can configure it as per your spreadsheet requirements by modifying the
table using the properties and methods of the ITable interface.

Modify table range
Modify table areas
Modify totals row of table column

Modify table range

GcExcel .NET allows you to modify the table range of your worksheet using the Resize method of the ITable interface.

Refer to the following example code to modify table range.

C#

//Modify table range
table.Resize(worksheet.Range["B1:E4"]);

Modify table areas

You can modify the value of specific table areas by accessing its header range, data range and total range using
the HeaderRange property, DataRange property and TotalsRange property of the ITable interface.

Refer to the following example code to modify table areas in your worksheet.

Documents for Excel, .NET Edition 287

Copyright © 2021 GrapeCity, Inc. All rights reserved.

C#

ITable table = worksheet.Tables.Add(worksheet.Range["A1:E5"], true);
table.ShowTotals = true;

//Populate table values
worksheet.Range["A2"].Value = 3;
worksheet.Range["A3"].Value = 4;
worksheet.Range["A4"].Value = 2;
worksheet.Range["A5"].Value = 1;
worksheet.Range["B2"].Value = 32;
worksheet.Range["B3"].Value = 41;
worksheet.Range["B4"].Value = 12;
worksheet.Range["B5"].Value = 16;
worksheet.Range["C2"].Value = 3;
worksheet.Range["C3"].Value = 4;
worksheet.Range["C4"].Value = 15;
worksheet.Range["C5"].Value = 18;

//Table second column name set to "Age".
worksheet.Tables[0].HeaderRange[0, 1].Value = "Age";

//"Age" Column's second row's value set to 23.
worksheet.Tables[0].DataRange[1, 1].Value = 23;

//"Age" column's total row function set to average.
worksheet.Tables[0].TotalsRange[0, 1].Formula = "=SUBTOTAL(101,[Age])";

Modify totals row of table column

When you need to make changes to the total row's calculation function of a specific table column, you can use the
TotalsCalculation property of the ITableColumn interface.

Refer to the following example code to modify column total row's calculation function.

C#

worksheet.Tables.Add(worksheet.Range["A1:C5"], true);
worksheet.Tables[0].ShowTotals = true;

//Populate table values
worksheet.Range["A2"].Value = 3;
worksheet.Range["A3"].Value = 4;
worksheet.Range["A4"].Value = 2;
worksheet.Range["A5"].Value = 1;
worksheet.Range["B1"].Value = 13;
worksheet.Range["B2"].Value = 32;
worksheet.Range["B3"].Value = 41;
worksheet.Range["B4"].Value = 12;
worksheet.Range["B5"].Value = 16;

Documents for Excel, .NET Edition 288

Copyright © 2021 GrapeCity, Inc. All rights reserved.

worksheet.Range["C1"].Value = 1;
worksheet.Range["C2"].Value = 3;
worksheet.Range["C3"].Value = 4;
worksheet.Range["C4"].Value = 15;
worksheet.Range["C5"].Value = 18;

//First table column's total row calculation fuction will be "=SUBTOTAL(101,[Column1])"
worksheet.Tables[0].Columns[1].TotalsCalculation = TotalsCalculation.Count;

Table Sort
GcExcel .NET provides an option to apply sorting on a specific table in the worksheet. To accomplish this, you can use
the Sort property of the ITable interface. The Apply method is used to apply the selected sort state and display the
results.

Refer to the following example code to apply table sorting in a worksheet.

C#

// Assigning Value to the range
 worksheet.Range["A2"].Value = 3;
 worksheet.Range["A3"].Value = 4;
 worksheet.Range["A4"].Value = 2;
 worksheet.Range["A5"].Value = 1;

 worksheet.Range["B2"].Value = 1;
 worksheet.Range["B3"].Value = 2;
 worksheet.Range["B4"].Value = 3;
 worksheet.Range["B5"].Value = 4;

 worksheet.Range["F2"].Value = "aaa";
 worksheet.Range["F3"].Value = "bbb";
 worksheet.Range["F4"].Value = "ccc";
 worksheet.Range["F5"].Value = "ddd";

 worksheet.Range["B2:B5"].FormatConditions.AddIconSetCondition();

//Sort by column A firstly, then by column B.
ValueSortField key1 = new ValueSortField(worksheet.Range["A1:A2"], SortOrder.Ascending);
IconSortField key2 = new IconSortField(worksheet.Range["B1:B2"],
workbook.IconSets[IconSetType.Icon3Arrows][1], SortOrder.Descending);

table.Sort.SortFields.Add(key1);
table.Sort.SortFields.Add(key2);
table.Sort.Apply();

Documents for Excel, .NET Edition 289

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Table Filters
When you have a lot of data to handle, you can create as many tables on a spreadsheet as you want and apply separate
filters on columns of each of the table to manage information in an effective manner.

GcExcel .NET provides users with the ability to set table filters while setting up worksheets for ensuring improved data
analysis.

When applying filters on tables in worksheets created, you need to first get the table range and then use the AutoFilter
method of the IRange interface to filter the table.

Refer to the following example code to set table filters in a worksheet.

C#

//Add Table
ITable table = worksheet.Tables.Add(worksheet.Range["A1:E5"], true);

//Populate table values
worksheet.Range["A2"].Value = 3;
worksheet.Range["A3"].Value = 4;
worksheet.Range["A4"].Value = 2;
worksheet.Range["A5"].Value = 1;

//Apply table filter
worksheet.Tables[0].Range.AutoFilter(0, ">2");

Add and Delete Table Columns and Rows
You can add and delete columns and rows of a table using the methods and properties of the following interfaces:

ITableColumns Interface - Represents the table columns collection.
ITableRows Interface - Represents the table rows collection.
ITableColumn Interface - Represents an individual table column.
ITableRow Interface - Represents an individual table row.

Add and Delete Single Column

To add and delete a table column, you can use the Add method of the ITableColumns interface and the Delete method
of the ITableColumn interface respectively.

Refer to the following example code in order to add and delete a table column.

C#

//Create first table
ITable table1 = worksheet.Tables.Add(worksheet.Range["D3:I6"], true);

//Create second table
ITable table2 = worksheet.Tables.Add(worksheet.Range["A1:C6"], true);

Documents for Excel, .NET Edition 290

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//Insert a table column before first column in first table
table1.Columns.Add(0);

//Insert a table column before first column in second table
table2.Columns.Add(0);

//Delete the first table column from the first table.
worksheet.Tables[0].Columns[0].Delete();

Add and Delete Multiple Columns

To add and delete multiple columns, you can use the Add and Delete methods of ITableColumns interface. These
methods take the position of column and count of columns to be added or deleted as parameters.

Refer to the following example code in order to add and delete table columns.

C#

//add table
ITable table = worksheet.Tables.Add(worksheet.Range["A1:F7"], true);

//add two columns before first column
table.Columns.Add(0, 2);

//delete three columns after second column
table.Columns.Delete(1, 3);

Add and Delete Single Row

To add and delete a table row, you can use the Add method of the ITableRows interface and the Delete method of the
ITableRow interface respectively.

Refer to the following example code in order to add and delete a table row.

C#

//insert a new row at the end of the first table.
table1.Rows.Add();

//insert a new row at the end of the second table.
table2.Rows.Add();

//Delete the second row in the second table.
table2.Rows[1].Delete();

Add and Delete Multiple Rows

To add and delete multiple rows, you can use the Add and Delete methods of ITableRows interface. These methods take
the position of row and count of rows to be added or deleted as parameters.

Documents for Excel, .NET Edition 291

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Refer to the following example code in order to add and delete table rows.

C#

 //add table
 ITable table = worksheet.Tables.Add(worksheet.Range["A1:F7"], true);

 //insert three rows after last row
 table.Rows.Add(-1, 3);

 //delete last table row
table.Rows.Delete(table.Rows.Count - 1, 1);

Table Style
In GcExcel .NET, you can create custom table style elements and apply them to your worksheet using the ITableStyle
Interface. Also, you can format a table using any of the predefined table styles provided by GcExcel .NET.

Typically, each workbook possesses an ITableStyle collection that is used to store both built-in and custom table styles. If
you want to insert a custom table style, you use the Add method of the ITables interface, which returns the IStyle object
representing the corresponding table style instance.

C#

//Use table style name get one build in table style.
ITableStyle tableStyle = workbook.TableStyles["TableStyleLight11"];
worksheet.Tables.Add(worksheet.Range[0, 0, 2, 2], true);

//set build in table style to table.
worksheet.Tables[0].TableStyle = tableStyle;

Modify Table with Custom Style
In order to manage the collection of table styles in your workbook, you can modify the existing table style with your own
custom table style that you have created. Each table style element represents the formatting for a particular element of
the table. When you define a custom style for your table, you need to first access the existing table style element to
customize table borders, set custom fill for your table, style row stripes or column stripes etc.

As a default characteristic, you will find your workbook possessing a collection of table style for you to apply formatting to
tables. These default table styles are built-in table styles which represent no formatting is applied to the tables. However,
when you create a custom table style, it automatically gets added to the table style collection of your workbook and can
be reused as and when you require.

If you want to change the table style, you can use the TableStyle property. For accomplishing this task, you will first need
to use the indexer notation of ITableStyleCollection to set the table style instance.

In case you want to delete the applied table style, you can use the Delete method.

Documents for Excel, .NET Edition 292

Copyright © 2021 GrapeCity, Inc. All rights reserved.

C#

//Add one custom table style.
ITableStyle style = workbook.TableStyles.Add("test");

//Set WholeTable element style.
style.TableStyleElements[TableStyleElementType.WholeTable].Font.Italic = true;
style.TableStyleElements[TableStyleElementType.WholeTable].Font.ThemeColor =
ThemeColor.Accent6;
style.TableStyleElements[TableStyleElementType.WholeTable].Font.Strikethrough = true;
style.TableStyleElements[TableStyleElementType.WholeTable].Borders.LineStyle =
BorderLineStyle.Dotted;
style.TableStyleElements[TableStyleElementType.WholeTable].Borders.ThemeColor =
ThemeColor.Accent2;
style.TableStyleElements[TableStyleElementType.WholeTable].Interior.Color =
Color.FromArgb(24, 232, 192);

//Set FirstColumnStripe element style.
style.TableStyleElements[TableStyleElementType.FirstColumnStripe].Font.Bold = true;
style.TableStyleElements[TableStyleElementType.FirstColumnStripe].Font.Color =
Color.FromArgb(255, 0, 0);
style.TableStyleElements[TableStyleElementType.FirstColumnStripe].Borders.LineStyle =
BorderLineStyle.Thick;
style.TableStyleElements[TableStyleElementType.FirstColumnStripe].Borders.ThemeColor =
ThemeColor.Accent5;
style.TableStyleElements[TableStyleElementType.FirstColumnStripe].Interior.Color =
Color.FromArgb(255, 255, 0);
style.TableStyleElements[TableStyleElementType.FirstColumnStripe].StripeSize = 2;

//Set SecondColumnStripe element style.
style.TableStyleElements[TableStyleElementType.SecondColumnStripe].Font.Color =
Color.FromArgb(255, 0, 255);
style.TableStyleElements[TableStyleElementType.SecondColumnStripe].Borders.LineStyle =
BorderLineStyle.DashDot;
style.TableStyleElements[TableStyleElementType.SecondColumnStripe].Borders.Color =
Color.FromArgb(42, 105, 162);
style.TableStyleElements[TableStyleElementType.SecondColumnStripe].Interior.Color =
Color.FromArgb(204, 204, 255);

ITable table = worksheet.Tables.Add(worksheet.Range["A1:C3"], true);

//Set custom table style to table.
table.TableStyle = style;

table.ShowTableStyleColumnStripes = true;

Documents for Excel, .NET Edition 293

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Modify Table Layout
In GcExcel .NET, Table Layout mode allows users to divide an area of a group into several rows and columns and then
place controls into the created cells by specifying the indexes and span values for rows and columns. This functionality
is similar to the one which is used while creating a table in HTML.

C#

ITable table = worksheet.Tables.Add(worksheet.Range["A1:B2"]);

//Show table header row.
table.ShowHeaders = true;

//To make "first row stripe" and "second row stripe" table style element's style
effective.
table.ShowTableStyleRowStripes = false;

//Hide auto filter drop down button.
table.ShowAutoFilterDropDown = false;

//To make "first column" table style element's style effective.
table.ShowTableStyleFirstColumn = true;

//Show table total row.
table.ShowTotals = true;

//To make "last column" table style element's style effective.
table.ShowTableStyleLastColumn = true;

//To make "first column stripe" and "second column stripe" table style element's style
effective.
table.ShowTableStyleColumnStripes = true;

//Unfilter table column filters, and hide auto filter drop down button.
table.ShowAutoFilter = false;

Pivot Table
GcExcel .NET provides users with the ability to display aggregated data in a spreadsheet using pivot tables - a data
summarization tool that can perform complex analysis of information stored in cells for exploring, analyzing and
manipulating bulk data in a worksheet.

Pivot tables not only help in categorizing data but they also help in computing the totals and average of the values in the
cells as per the summary functions defined in the built-in functions list.

For incorporating and using pivot tables in worksheets, you can perform the following tasks:

Documents for Excel, .NET Edition 294

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Create Pivot Table
Pivot Table Settings
Pivot Table Style

Create Pivot Table
GcExcel .NET allows you to create pivot tables in a spreadsheet. But, before generating a pivot table, you first need
to create the pivot cache using the PivotCaches collection to stores all the pivot caches in the workbook.

After you accomplish this, you need to call the Create method of the IPivotCaches interface to create a new pivot
cache. After creating pivot cache, the next step is to create the new pivot table using CreatePivotTable method of
the IPivotCache interface.

Refer to the following example code to create pivot table in a worksheet.

C#

 //Source data for PivotCache
 object[,] sourceData = new object[,] {
 { "Order ID", "Product", "Category", "Amount", "Date",
"Country" },
 { 1, "Carrots", "Vegetables", 4270, new DateTime(2012, 1, 6), "United
States" },
 { 2, "Broccoli", "Vegetables", 8239, new DateTime(2012, 1, 7), "United
Kingdom" },
 { 3, "Banana", "Fruit", 617, new DateTime(2012, 1, 8), "United
States" },
 { 4, "Banana", "Fruit", 8384, new DateTime(2012, 1, 10),
"Canada" },
 { 5, "Beans", "Vegetables", 2626, new DateTime(2012, 1, 10),
"Germany" },
 { 6, "Orange", "Fruit", 3610, new DateTime(2012, 1, 11), "United
States" },
 { 7, "Broccoli", "Vegetables", 9062, new DateTime(2012, 1, 11),
"Australia" },
 { 8, "Banana", "Fruit", 6906, new DateTime(2012, 1, 16), "New
Zealand" },
 { 9, "Apple", "Fruit", 2417, new DateTime(2012, 1, 16),
"France" },
 { 10, "Apple", "Fruit", 7431, new DateTime(2012, 1, 16),
"Canada" },
 { 11, "Banana", "Fruit", 8250, new DateTime(2012, 1, 16),
"Germany" },
 { 12, "Broccoli", "Vegetables", 7012, new DateTime(2012, 1, 18), "United
States" },
 { 13, "Carrots", "Vegetables", 1903, new DateTime(2012, 1, 20),
"Germany" },
 { 14, "Broccoli", "Vegetables", 2824, new DateTime(2012, 1, 22),
"Canada" },

Documents for Excel, .NET Edition 295

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 { 15, "Apple", "Fruit", 6946, new DateTime(2012, 1, 24),
"France" },
};

 //Initialize the WorkBook and fetch the default WorkSheet
 Workbook workbook = new Workbook();
 IWorksheet worksheet = workbook.Worksheets[0];
 // Assigning data to the range
 worksheet.Range["A1:F16"].Value = sourceData;
 // Creating pivot
 var pivotcache = workbook.PivotCaches.Create(worksheet.Range["A1:F16"]);
 var pivottable = worksheet.PivotTables.Add(pivotcache,
worksheet.Range["L7"], "pivottable1");

Pivot Table Settings
You can modify the setting of the pivot table created in a spreadsheet by performing the following tasks:

Configure Pivot Table Fields

You can configure the fields of your pivot table using the properties and methods of the IPivotCaches interface and IPivotTables interface.

Refer to the following example code to configure the pivot table fields in a worksheet.

C#

// Configuring pivot table fields
var field_Category = pivottable.PivotFields["Category"];
field_Category.Orientation = PivotFieldOrientation.RowField;

var field_Product = pivottable.PivotFields["Product"];
field_Product.Orientation = PivotFieldOrientation.ColumnField;

var field_Amount = pivottable.PivotFields["Amount"];
field_Amount.Orientation = PivotFieldOrientation.DataField;

var field_Country = pivottable.PivotFields["Country"];
field_Country.Orientation = PivotFieldOrientation.PageField;

Add Field Function

Refer to the following example code to add field function in a pivot table.

C#

//Set field amount function
field_Amount.Function = ConsolidationFunction.Average;

Filter Pivot Table

Refer to the following example code to filter a pivot table.

C#

var field_product = pivottable.PivotFields[1];
field_product.Orientation = PivotFieldOrientation.RowField;

Documents for Excel, .NET Edition 296

Copyright © 2021 GrapeCity, Inc. All rights reserved.

var field_Amount = pivottable.PivotFields[3];
field_Amount.Orientation = PivotFieldOrientation.DataField;

var field_Country = pivottable.PivotFields[5];
field_Country.Orientation = PivotFieldOrientation.PageField;

//row field filter.
field_product.PivotItems["Apple"].Visible = false;
field_product.PivotItems["Beans"].Visible = false;
field_product.PivotItems["Orange"].Visible = false;

//page filter.
field_Country.PivotItems["United States"].Visible = false;
field_Country.PivotItems["Canada"].Visible = false;

Manage Pivot Field Level

Refer to the following example code to manage the field level of a pivot table.

C#

//product in level 1.
var field_product = pivottable.PivotFields["Product"];
field_product.Orientation = PivotFieldOrientation.RowField;

//category in level 2.
var field_category = pivottable.PivotFields["Category"];
field_category.Orientation = PivotFieldOrientation.RowField;

var field_Amount = pivottable.PivotFields[3];
field_Amount.Orientation = PivotFieldOrientation.DataField;

//category will in level 1 and product in level 2.
field_product.Position = 1;
field_category.Position = 0;

Manage Grand Total Visibility Settings

The Grand total in pivot table helps in analyzing the total sum of the data in the pivot table. You can display or hide the grand total for the row or column field by
setting the visibility of ColumnGrand and RowGrand properties of the IPivotTable interface. These properties take boolean values and are set to true by default.
For example, if you want to display the grand total only for rows, then set the RowGrand property to true and ColumnGrand to false.

Refer to the following example code to manage the visibility settings of the grand total field.

C#

// Set the PivotTable report to show grand totals for columns & rows
pivottable.ColumnGrand = true;
pivottable.RowGrand = true;

Change Row Axis Layout

The display of pivot table can be changed to any desired layout using the LayoutRowType enumeration. The following options are provided by this enumeration:

CompactRow (default layout)
OutlineRow
TabularRow

Note: The SubtotalLocationType enumeration can only be set to Bottom if the LayoutRowType is set to TabularRow.

Refer to the following example code to set the row axis layout of the pivot table to TabularRow.

C#

// Set the PivotTable LayoutRowType to Tabular Row
pivottable.SetRowAxisLayout(LayoutRowType.TabularRow);

Documents for Excel, .NET Edition 297

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Change Pivot Table Layout

The different layouts of a pivot table makes it more flexible and convenient to analyse its data. GcExcel supports the following pivot table layouts:

Compact form
Outline form
Tabular form

In addition to these, you can also choose to insert blank rows, set the position of subtotals, show all items or to repeat any item in the pivot table layouts.

Refer to the following example code to set the layout of pivot table and additional options.

C#

//set pivot table layout
field_Category.LayoutForm = LayoutFormType.Tabular;
field_Category.LayoutBlankLine = true;

field_Country.LayoutForm = LayoutFormType.Outline;
field_Country.LayoutCompactRow = false;

//set subtotal location
field_Country.LayoutSubtotalLocation = SubtotalLocationType.Bottom;
field_Country.ShowAllItems = true;

Rename Pivot Table Fields

Sometimes, the pivot table fields are not easily comprehendible and hence can be renamed to meaningful and easily understandable names.

Refer to the following example code to rename the pivot table fields.

C#

//config pivot table's fields
var field_Date = pivottable.PivotFields["Date"];
field_Date.Orientation = PivotFieldOrientation.PageField;

// Renaming PivotField "Category" to "Type of Category"
var field_Category = pivottable.PivotFields["Category"];
field_Category.Name = "Type of Category";
field_Category.Orientation = PivotFieldOrientation.RowField;

var field_Product = pivottable.PivotFields["Product"];
field_Product.Orientation = PivotFieldOrientation.ColumnField;

var field_Amount = pivottable.PivotFields["Amount"];
field_Amount.Orientation = PivotFieldOrientation.DataField;

var field_Country = pivottable.PivotFields["Country"];
field_Country.Orientation = PivotFieldOrientation.RowField;

// Renaming DataField "Sum of Amount" to "Amount Total"
pivottable.DataFields[0].Name = "Amount Total";

Refresh Pivot Table

Refer to the following example code to refresh a pivot table.

C#

var field_product = pivottable.PivotFields["Product"];
field_product.Orientation = PivotFieldOrientation.RowField;

var field_Amount = pivottable.PivotFields[3];
field_Amount.Orientation = PivotFieldOrientation.DataField;

Documents for Excel, .NET Edition 298

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//change pivot cache's source data.
worksheet.Range["D8"].Value = 3000;

//sync cache's data to pivot table.
worksheet.PivotTables[0].Refresh();

Apply Different Calculations on a Pivot Field

In GcExcel, you can add a pivot table field to a pivot table multiple times by applying various calculation functions on it. These functions include sum, average, min,
max, count etc. The final pivot table output will contain multiple data fields based on the calculations applied over the pivot table field.

Refer to the following example code to add a pivot table field as multiple data fields by applying different calculation functions.

C#

//config pivot table's fields
var field_Category = pivottable.PivotFields["Category"];
field_Category.Orientation = PivotFieldOrientation.RowField;

var field_Product = pivottable.PivotFields["Product"];
field_Product.Orientation = PivotFieldOrientation.RowField;

//sum function on Amount field
var field_Amount = pivottable.PivotFields["Amount"];
pivottable.AddDataField(field_Amount, "sum amount", ConsolidationFunction.Sum);

//count function on Amount field
var field_Amount2 = pivottable.PivotFields["Amount"];
pivottable.AddDataField(field_Amount2, "count amount", ConsolidationFunction.Count);

The output of above example code when viewed in Excel, looks like below:

Defer Layout Update

In case of huge amount of data, the performance of a pivot table might get affected while updating its layout by adding or moving fields in the different areas of a
pivot table.

GcExcel provides DeferLayoutUpdate property which improves the performance of a pivot table by deferring its layout updates. When set to true, the pivot table
is recalculated only after all the fields are added or moved instead of getting recalculated after each change. You can choose to update the pivot table output after
making all the changes by calling the Update method.

Refer to the following example code to defer layout updates to a pivot table.

C#

//defer layout update
pivottable.DeferLayoutUpdate = true;

//config pivot table's fields
var field_Category = pivottable.PivotFields["Category"];
field_Category.Orientation = PivotFieldOrientation.RowField;

Documents for Excel, .NET Edition 299

Copyright © 2021 GrapeCity, Inc. All rights reserved.

var field_Product = pivottable.PivotFields["Product"];
field_Product.Orientation = PivotFieldOrientation.ColumnField;

var field_Amount = pivottable.PivotFields["Amount"];
field_Amount.Orientation = PivotFieldOrientation.DataField;

//must update the pivottable
pivottable.Update();

Use Pivot Table Options

GcExcel supports the following layout and formatting options in a pivot table:

Merging cells with outer-row item, column item, subtotal and grand total labels
Indentation of Pivot table items when compact row layout form is set
Ordering page fields in pivot table layout. It can be either DownThenOver (default value) or OverThenDown.
Defining number of page fields in each column or row in the pivot table output
Displaying custom string in cells which contain errors
Displaying custom string in cells which contain null values

Refer to the following example code to set various layout and format options in a pivot table.

C#

//set layout and format options
pivottable.PageFieldOrder = Order.OverThenDown;
pivottable.PageFieldWrapCount = 2;

pivottable.CompactRowIndent = 2;

pivottable.ErrorString = "Error";
pivottable.NullString = "Empty";

pivottable.DisplayErrorString = true;
pivottable.DisplayNullString = true;

Sort Pivot Table Fields

GcExcel supports sorting data fields in a pivot table by using AutoSort method and defining ascending or descending as its sort order.

You can also retrieve the name of data field used to sort the specified PivotTable field by using AutoSortField property and its sorting order by
using AutoSortOrder property. The position of an item in its field can also be set or retrieved by using the Position property of IPivotItem interface.

Refer to the following example code to sort 'Product' field in a pivot table.

C#

//sort the product items
field_Product.AutoSort(SortOrder.Descending);

Retrieve Pivot Table Ranges

The structure of a pivot table report is comprised of different ranges. In order to retrieve a specific range of pivot table, it is important to understand the structure
of a pivot table.

Documents for Excel, .NET Edition 300

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 As can be observed from the above screenshot, the structure of a pivot table can be explained as:

PivotRowAxis: The row axis area of a pivot table contains fields which group the table's data by rows
PivotColumnAxis: The column axis area of a pivot table contains fields which break the table's data into different categories by columns.
Pivot Cell: Any cell in a pivot table
Row PivotLine: Any row in the row axis area of a pivot table
Column PivotLine: Any column in the column axis area of a pivot table

GcExcel provides API to retrieve the detailed ranges of a pivot table to apply any operation or style on them to make the result more readable and
distinguishable. Detailed pivot table ranges which can be retrieved are:

Different types of pivot cells like subtotals, grand totals, data fields, pivot fields, values, blank cells
Different types of pivot lines like subtotal, grand total, regular or blank line
Entire row or column axis
Whole page area
Entire pivot table report including page fields
A value in any range of pivot table
The position of any element or pivot line

Refer to the following example code to get a specific range and set its style in a pivot table report.

C#

//get detail range and set style
foreach (var item in pivottable.PivotRowAxis.PivotLines)
{
 if (item.LineType == PivotLineType.Subtotal)
 {
 item.PivotLineCells[0].Range.Interior.Color = Color.GreenYellow;
 }
}

The output of above code example when viewed in Excel, looks like below:

Documents for Excel, .NET Edition 301

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Note: Style applied to a pivot table is lost if the pivot table is changed in any way.

Set Conditional Formatting

Refer to the following example code to set conditional formatting in last row of a pivot table report by setting cell color when the values are above average.

C#

// set condional format to the last row
int rowCount = pivottable.DataBodyRange.RowCount;
IAboveAverage averageCondition = pivottable.DataBodyRange.Rows[rowCount - 1].FormatConditions.AddAboveAverage();
averageCondition.AboveBelow = AboveBelow.AboveAverage;
averageCondition.Interior.Color = Color.Pink;

Note: Conditional formatting applied to a pivot table is lost if the pivot table is changed in any way.

Disable Automatic Grouping of Date/Time Columns

The Date/Time columns in a pivot table are grouped together by default. GcExcel allows you to disable this grouping by setting
AutomaticGroupDateTimeInPivotTable property to false before creating the pivot cache while creating a pivot table.

When AutomaticGroupDateTimeInPivotTable = False When AutomaticGroupDateTimeInPivotTable = True (default)

Refer to the following example code to disable automatic grouping of date/time columns.

C#

// Set false to group date/time fields in PivotTable automatically
workbook.Options.Data.AutomaticGroupDateTimeInPivotTable = false;

Pivot Table Style
GcExcel .NET allows users to apply built-in and custom styles to the pivot table.

With the help of this feature, users will be able to save pivot tables with different styles (with respect to the pivot table

Documents for Excel, .NET Edition 302

Copyright © 2021 GrapeCity, Inc. All rights reserved.

layout and pivot table fields). Users can customize how their pivot table is displayed including the pivot table’s orientation,
page size, pivot table fields and many other characteristics as per their custom display preferences. Further, users can also
refer to the topic Export Pivot Table Styles and Format in order export spreadsheets with different pivot table styles in PDF
format.

Usually, when users add a pivot table to the worksheet, a default pivot table style is applied automatically. Users can
modify the default style of the pivot table added to the worksheet by either copying an existing style (also called built-in
style) or creating a custom pivot table style right from the scratch.

In order to apply style to the pivot table, you can refer to the following sections:

Apply Built-In Pivot Table Style
Apply Custom Style

Apply Built-In Pivot Table Style

You can change the default appearance of the pivot table by applying any of the built-in styles. In order to apply built-in
style to the pivot table, users can either use the Style property or use the TableStyle property of the IPivotTable
interface.

The image shared below depicts a pivot table with built-in style.

Refer to the following example code in order to apply built-in style to the pivot table.

C#

 // Initialize workbook
 Workbook workbook = new Workbook();

 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 // Create PivotTable
 object[,] sourceData = new object[,] {

Documents for Excel, .NET Edition 303

Copyright © 2021 GrapeCity, Inc. All rights reserved.

{ "Order ID", "Product", "Category", "Amount", "Date", "Country" },
{ 1, "Carrots", "Vegetables", 4270, new DateTime(2018, 1, 6), "United States" },
{ 2, "Broccoli", "Vegetables", 8239, new DateTime(2018, 1, 7), "United Kingdom" },
{ 3, "Banana", "Fruit", 617, new DateTime(2018, 1, 8), "United States" },
{ 4, "Banana", "Fruit", 8384, new DateTime(2018, 1, 10), "Canada" },
{ 5, "Beans", "Vegetables", 2626, new DateTime(2018, 1, 10), "Germany" },
{ 6, "Orange", "Fruit", 3610, new DateTime(2018, 1, 11), "United States" },
{ 7, "Broccoli", "Vegetables", 9062, new DateTime(2018, 1, 11), "Australia" },
{ 8, "Banana", "Fruit", 6906, new DateTime(2018, 1, 16), "New Zealand" },
{ 9, "Apple", "Fruit", 2417, new DateTime(2018, 1, 16), "France" },
{ 10, "Apple", "Fruit", 7431, new DateTime(2018, 1, 16), "Canada" },
{ 11, "Banana", "Fruit", 8250, new DateTime(2018, 1, 16), "Germany" },
{ 12, "Broccoli", "Vegetables", 7012, new DateTime(2018, 1, 18), "United States" },
{ 13, "Carrots", "Vegetables", 1903, new DateTime(2018, 1, 20), "Germany" },
{ 14, "Broccoli", "Vegetables", 2824, new DateTime(2018, 1, 22), "Canada" },
{ 15, "Apple", "Fruit", 6946, new DateTime(2018, 1, 24), "France" },
};

 worksheet.Range["A20:F33"].Value = sourceData;
 worksheet.Range["A:F"].ColumnWidth = 10;

 // Add pivot table
 var pivotcache = workbook.PivotCaches.Create(worksheet.Range["A20:F33"]);
 var pivottable = worksheet.PivotTables.Add(pivotcache, worksheet.Range["A1"],
"pivottable1");

 // Setting number format for a field
 worksheet.Range["D21:D35"].NumberFormat = "$#,##0.00";

 // Configure pivot table's fields
 var field_Date = pivottable.PivotFields["Date"];
 field_Date.Orientation = PivotFieldOrientation.PageField;

 var field_Category = pivottable.PivotFields["Category"];
 field_Category.Orientation = PivotFieldOrientation.RowField;

 var field_Product = pivottable.PivotFields["Product"];
 field_Product.Orientation = PivotFieldOrientation.ColumnField;

 var field_Amount = pivottable.PivotFields["Amount"];
 field_Amount.Orientation = PivotFieldOrientation.DataField;

 field_Amount.NumberFormat = "$#,##0.00";

 var field_Country = pivottable.PivotFields["Country"];
 field_Country.Orientation = PivotFieldOrientation.RowField;

 // Set pivot style

Documents for Excel, .NET Edition 304

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 pivottable.TableStyle = "PivotStyleMedium20";

 worksheet.PageSetup.TopMargin = 30;
 worksheet.PageSetup.LeftMargin = 30;

 worksheet.Range["A1:H16"].Columns.AutoFit();

 // Saving workbook to PDF
 workbook.Save(@"81-PivotTableBuiltInStyle.pdf", SaveFileFormat.Pdf);

Note: While applying built-in styles to the pivot table, it is important to note that if users apply a TableStyle
whose ShowAsAvailableTableStyle property is set to true, then the InvalidOperationException is thrown.

Apply Custom Style

If you don't want to apply any of the built-in styles, you can also create and apply your own custom style to the pivot
table. This can be done using the Style property of the IPivotTable interface.

The image shared below depicts a pivot table with custom style.

Refer to the following example code in order to apply custom style to the pivot table.

C#

 // Initialize workbook
 Workbook workbook = new Workbook();

 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

Documents for Excel, .NET Edition 305

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 object[,] sourceData = new object[,] {
{ "Order ID", "Product", "Category", "Amount", "Date", "Country" },
{ 1, "Carrots", "Vegetables", 4270, new DateTime(2018, 1, 6), "United States" },
{ 2, "Broccoli", "Vegetables", 8239, new DateTime(2018, 1, 7), "United Kingdom" },
{ 3, "Banana", "Fruit", 617, new DateTime(2018, 1, 8), "United States" },
{ 4, "Banana", "Fruit", 8384, new DateTime(2018, 1, 10), "Canada" },
{ 5, "Beans", "Vegetables", 2626, new DateTime(2018, 1, 10), "Germany" },
{ 6, "Orange", "Fruit", 3610, new DateTime(2018, 1, 11), "United States" },
{ 7, "Broccoli", "Vegetables", 9062, new DateTime(2018, 1, 11), "Australia" },
{ 8, "Banana", "Fruit", 6906, new DateTime(2018, 1, 16), "New Zealand" },
{ 9, "Apple", "Fruit", 2417, new DateTime(2018, 1, 16), "France" },
{ 10, "Apple", "Fruit", 7431, new DateTime(2018, 1, 16), "Canada" },
{ 11, "Banana", "Fruit", 8250, new DateTime(2018, 1, 16), "Germany" },
{ 12, "Broccoli", "Vegetables", 7012, new DateTime(2018, 1, 18), "United States" },
{ 13, "Carrots", "Vegetables", 1903, new DateTime(2018, 1, 20), "Germany" },
{ 14, "Broccoli", "Vegetables", 2824, new DateTime(2018, 1, 22), "Canada" },
{ 15, "Apple", "Fruit", 6946, new DateTime(2018, 1, 24), "France" },
};

 // Set source data
 worksheet.Range["A20:F33"].Value = sourceData;
 worksheet.Range["A:F"].ColumnWidth = 10;

 // Add pivot table
 var pivotcache = workbook.PivotCaches.Create(worksheet.Range["A20:F33"]);
 var pivottable = worksheet.PivotTables.Add(pivotcache, worksheet.Range["A1"],
"pivottable1");

 // Setting number format for a field
 worksheet.Range["D21:D35"].NumberFormat = "$#,##0.00";

 // Configure pivot table's fields
 var field_Date = pivottable.PivotFields["Date"];
 field_Date.Orientation = PivotFieldOrientation.PageField;

 var field_Category = pivottable.PivotFields["Category"];
 field_Category.Orientation = PivotFieldOrientation.RowField;

 var field_Product = pivottable.PivotFields["Product"];
 field_Product.Orientation = PivotFieldOrientation.ColumnField;

 var field_Amount = pivottable.PivotFields["Amount"];
 field_Amount.Orientation = PivotFieldOrientation.DataField;
 field_Amount.NumberFormat = "$#,##0.00";

 var field_Country = pivottable.PivotFields["Country"];
 field_Country.Orientation = PivotFieldOrientation.RowField;

Documents for Excel, .NET Edition 306

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 // Create pivot style with name "CustomPivotstyle"
 ITableStyle pivotStyle = workbook.TableStyles.Add("CustomPivotstyle");

 // Set table style as pivot table style
 pivotStyle.ShowAsAvailablePivotStyle = true;

 pivotStyle.TableStyleElements[TableStyleElementType.PageFieldLabels].Interior.Color =
System.Drawing.Color.LightGreen;
 pivotStyle.TableStyleElements[TableStyleElementType.PageFieldValues].Interior.Color =
System.Drawing.Color.LightGreen;

 pivotStyle.TableStyleElements[TableStyleElementType.GrandTotalColumn].Interior.Color =
System.Drawing.Color.PowderBlue;
 pivotStyle.TableStyleElements[TableStyleElementType.GrandTotalRow].Interior.Color =
System.Drawing.Color.PowderBlue;

 pivotStyle.TableStyleElements[TableStyleElementType.HeaderRow].Interior.Color =
System.Drawing.Color.MistyRose;
 pivotStyle.TableStyleElements[TableStyleElementType.FirstColumn].Interior.Color =
System.Drawing.Color.LightPink;

 pivotStyle.TableStyleElements[TableStyleElementType.FirstRowStripe].Interior.Color =
System.Drawing.Color.SteelBlue;
 pivotStyle.TableStyleElements[TableStyleElementType.SecondRowStripe].Interior.Color =
System.Drawing.Color.NavajoWhite;

 // Set ShowTableStyleRowStripes as true
 pivottable.ShowTableStyleRowStripes = true;

 // Set pivot table style
 pivottable.Style = pivotStyle;
 worksheet.Range["A1:H16"].Columns.AutoFit();
 worksheet.PageSetup.TopMargin = 30;
 worksheet.PageSetup.LeftMargin = 30;

 // Saving workbook to PDF
 workbook.Save(@"82-PivotTableCustomStyle.pdf", SaveFileFormat.Pdf);

Note: While applying custom styles to the pivot table, it is important to note that if users apply a TableStyle
whose ShowAsAvailablePivotStyle property is set to false, then the InvalidOperationException is thrown.

Pivot Chart
Pivot chart represents the data of associated pivot table in a chart. Like a normal chart, the pivot chart displays data series,
categories, legends, data markers and axes. You can change the titles, legend placement, data labels, chart location etc.

Documents for Excel, .NET Edition 307

Copyright © 2021 GrapeCity, Inc. All rights reserved.

A pivot chart is interactive as it reflects the changes made in its associated pivot table. The pivot table fields are displayed
on a pivot chart as buttons. You can configure whether to display the legend, axis, value field buttons or expanding or
collapsing entire field buttons by using the PivotOptions property. When a field button is clicked, its filter pane
appears. It helps you to sort and filter pivot chart's underlying data.

Excel files with pivot charts can be loaded, modified and saved back to Excel. The below image displays a pivot chart with
legend, axis and value field buttons.

Create Pivot Chart

The below mentioned steps explain how to create a pivot chart:

1. Create a pivot table.
2. Add a normal chart by using AddChart method of IShapes interface.
3. Use SetSourceData method of IChart interface to turn a normal chart into a PivotChart by providing the source

range inside the pivot table's range.

C#

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

object[,] sourceData = new object[,] {
{ "Order ID", "Product", "Category", "Amount", "Date",
"Country" },
{ 1, "Bose 785593-0050", "Consumer Electronics", 4270, new
DateTime(2018, 1, 6), "United States" },
{ 2, "Canon EOS 1500D", "Consumer Electronics", 8239, new
DateTime(2018, 1, 7), "United Kingdom" },
{ 3, "Haier 394L 4Star", "Consumer Electronics", 617, new
DateTime(2018, 1, 8), "United States" },

Documents for Excel, .NET Edition 308

Copyright © 2021 GrapeCity, Inc. All rights reserved.

{ 4, "IFB 6.5 Kg FullyAuto", "Consumer Electronics", 8384, new
DateTime(2018, 1, 10), "Canada" },
{ 5, "Mi LED 40inch", "Consumer Electronics", 2626, new
DateTime(2018, 1, 10), "Germany" },
{ 6, "Sennheiser HD 4.40-BT", "Consumer Electronics", 3610, new
DateTime(2018, 1, 11), "United States" },
{ 7, "Iphone XR", "Mobile", 9062, new
DateTime(2018, 1, 11), "Australia" },
{ 8, "OnePlus 7Pro", "Mobile", 6906, new
DateTime(2018, 1, 16), "New Zealand" },
{ 9, "Redmi 7", "Mobile", 2417, new
DateTime(2018, 1, 16), "France" },
{ 10, "Samsung S9", "Mobile", 7431, new
DateTime(2018, 1, 16), "Canada" },
{ 11, "OnePlus 7Pro", "Mobile", 8250, new
DateTime(2018, 1, 16), "Germany" },
{ 12, "Redmi 7", "Mobile", 7012, new
DateTime(2018, 1, 18), "United States" },
{ 13, "Bose 785593-0050", "Consumer Electronics", 1903, new
DateTime(2018, 1, 20), "Germany" },
{ 14, "Canon EOS 1500D", "Consumer Electronics", 2824, new
DateTime(2018, 1, 22), "Canada" },
{ 15, "Haier 394L 4Star", "Consumer Electronics", 6946, new
DateTime(2018, 1, 24), "France" },
};

 IWorksheet worksheet = workbook.Worksheets[0];
 worksheet.Range["A6:F21"].Value = sourceData;
 worksheet.Range["D6:D21"].NumberFormat = "$#,##0.00";
 // Create pivot cache
 var pivotcache = workbook.PivotCaches.Create(worksheet.Range["A6:F21"]);
 // Create pivot table
 var pivottable = worksheet.PivotTables.Add(pivotcache, worksheet.Range["A1"],
"pivottable1");

 //config pivot table's fields
 pivottable.PivotFields["Category"].Orientation = PivotFieldOrientation.RowField;
 pivottable.PivotFields["Country"].Orientation = PivotFieldOrientation.ColumnField;
 pivottable.PivotFields["Amount"].Orientation = PivotFieldOrientation.DataField;

 worksheet.Range["A:I"].AutoFit();

 // Add a column chart
 IChart chart = worksheet.Shapes.AddChartInPixel(ChartType.ColumnClustered, 0, 100, 689,
320).Chart;

 // Set data source(use pivot table range).
 chart.SetSourceData(pivottable.TableRange1);

Documents for Excel, .NET Edition 309

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 //save to an excel file
 workbook.Save("createpivotchart.xlsx");

Note: To turn a normal chart into a pivot chart, add any chart from the ones listed below. A
NotSupportedException will be thrown if any other chart is added.

Area
Bar
Column
Pie/Doughnut
Line
Radar
Surface

Configure Pivot Chart's Buttons

Refer to the following example code to configure pivot chart's buttons.

C#

chart.PivotOptions.ShowLegendFieldButtons = false;
chart.PivotOptions.ShowAxisFieldButtons = false;

// Set legend position to bottom
chart.Legend.Position = LegendPosition.Bottom;

Update Pivot Table to Reflect in Pivot Chart

Refer to the following example code to update pivot table to reflect in pivot chart.

C#

// Drag row field to hidden
chart.PivotTable.RowFields[0].Orientation = PivotFieldOrientation.Hidden;

Convert Pivot Chart to Normal Chart

Refer to the following example code to convert pivot chart to normal chart.

C#

// Clear pivot table to turn a PivotChart into a normal chart.
pivottable.TableRange2.Clear();

Limitations

The pivot chart is exported as a normal chart in PDF or while doing JSON I/O.
If you add, change or delete the source range of a series, it will not reflect in pivot chart.

Documents for Excel, .NET Edition 310

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Sparkline
GcExcel .NET allows you to highlight specific information and see how it varies over time using Sparklines. Sparklines can
be understood as small, lightweight charts that are drawn inside cells to quickly visualize data for improved analysis.

Sparklines fit inside a cell and use data from a range of cells which is specified at the time of creating it. Typically, they are
placed next to the selected cell range in the spreadsheet in order to enhance readability of data. You can mark data values
to depict high, low, first, last, and negative values with distinct colors as per your requirement. These are particularly
useful for analytical dashboards, presentations, business reports etc.

The sparkline displays the most recent value as the rightmost data point and compares it with earlier values on a scale,
allowing you to view general changes in data over time.

Using sparklines includes the following tasks:

Add a group of new sparklines
Clear sparkline
Clear sparkline groups
Create a group of existing sparklines
Add group of new sparklines with Date Axis
Configure layout of sparkline

Add a group of new sparklines

You can add a group of new sparklines for each row or column of data in your worksheet by first specifying the
data range and then using the Add method of the ISparklineGroups interface.

Refer to the following example code to add a group of new sparklines.

C#

//Create workbook and access its first worksheet
Workbook workbook = new Workbook();

Documents for Excel, .NET Edition 311

Copyright © 2021 GrapeCity, Inc. All rights reserved.

IWorksheet worksheet = workbook.Worksheets[0];
// Defining data in the range
worksheet.Range["A1:C4"].Value = new object[,]
 {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
 };
// Add a group of new sparklines
worksheet.Range["D1:D4"].SparklineGroups.Add(SparkType.Line, "A1:C4");

Clear sparkline

You can remove a sparkline from your worksheet by first specifying the data range and then using the Clear method of
the ISparklineGroups interface.

Refer to the following example code to clear sparkline.

C#

// Defining data in the range
worksheet.Range["A1:C4"].Value = new object[,]
 {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
 };

worksheet.Range["D1:D4"].SparklineGroups.Add(SparkType.Line, "A1:C4");
// Defining data in the range
worksheet.Range["F1:H4"].Value = new object[,]
{
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
};
// Add a group of new sparklines
worksheet.Range["J1:J4"].SparklineGroups.Add(SparkType.Line, "F1:H4");

//Clear D2 and J1 cell's sparkline.
worksheet.Range["D2, J1"].SparklineGroups.Clear();

Clear sparkline groups

You can remove a group of sparklines (added for a row or column) from your worksheet by specifying the data range and
then using the ClearGroups method of the ISparklineGroups interface.

Documents for Excel, .NET Edition 312

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Refer to the following example code to clear sparkline groups.

C#

// Defining data in the range
worksheet.Range["A1:C4"].Value = new object[,]
{
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
};
// Add a group of new sparklines
worksheet.Range["D1:D4"].SparklineGroups.Add(SparkType.Line, "A1:C4");
// Defining data in the range
worksheet.Range["F1:H4"].Value = new object[,]
 {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
 };
// Add a group of new sparklines
worksheet.Range["J1:J4"].SparklineGroups.Add(SparkType.Line, "F1:H4");

//Clear sparkline groups.
worksheet.Range["D2, J1"].SparklineGroups.ClearGroups();

Create a group of existing sparklines

You can create a group of existing sparklines by specifying the data range and then using the Group() method of
the ISparklineGroups interface.

Refer to the following example code to create a group of existing sparklines.

C#

// Defining data in the range
worksheet.Range["A1:C4"].Value = new object[,]
 {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
 };
// Add a group of new sparklines
worksheet.Range["D1:D4"].SparklineGroups.Add(SparkType.Line, "A1:C4");
// Defining data in the range
worksheet.Range["F1:H4"].Value = new object[,]
 {

Documents for Excel, .NET Edition 313

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
 };
// Add a group of new sparklines
worksheet.Range["J1:J4"].SparklineGroups.Add(SparkType.Column, "F1:H4");

//Create a new group, according to Range["J2"]'s sparkline group setting.
worksheet.Range["A1:J4"].SparklineGroups.Group(worksheet.Range["J2"]);

Add group of new sparklines with Date Axis

You can add a group of new sparklines with date axis by first specifying the data range and then using the DateRange
property of the ISparklineGroup interface.

Refer to the following example code to add group of new sparkline with date axis.

C#

// Defining data in the range
worksheet.Range["A1:C4"].Value = new object[,]
 {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
 };
// Add a group of new sparklines
worksheet.Range["D1:D4"].SparklineGroups.Add(SparkType.Line, "A1:C4");
worksheet.Range["A7:C7"].Value = new object[] { new DateTime(2011, 12, 16), new
DateTime(2011, 12, 17), new DateTime(2011, 12, 18) };

//Set horizontal axis's Date range.
worksheet.Range["D1"].SparklineGroups[0].DateRange = "A7:C7";

worksheet.Range["D1"].SparklineGroups[0].Axes.Horizontal.Axis.Visible = true;
worksheet.Range["D1"].SparklineGroups[0].Axes.Horizontal.Axis.Color.Color = Color.Green;
worksheet.Range["D1"].SparklineGroups[0].Axes.Vertical.MinScaleType =
SparkScale.SparkScaleCustom;
worksheet.Range["D1"].SparklineGroups[0].Axes.Vertical.MaxScaleType =
SparkScale.SparkScaleCustom;
worksheet.Range["D1"].SparklineGroups[0].Axes.Vertical.CustomMinScaleValue = -2;
worksheet.Range["D1"].SparklineGroups[0].Axes.Vertical.CustomMaxScaleValue = 8;

Configure layout of sparkline

You can configure the layout of the sparkline by using the properties of the ISparklineGroup interface.

Refer to the following example code to configure the layout of the sparkline.

Documents for Excel, .NET Edition 314

Copyright © 2021 GrapeCity, Inc. All rights reserved.

C#

// Defining data in the range
worksheet.Range["A1:C4"].Value = new object[,]
{
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
};
// Adding sparkline
worksheet.Range["D1:D4"].SparklineGroups.Add(SparkType.Line, "A1:C4");
// Configuring the layout
var sparklinegroup = worksheet.Range["D1"].SparklineGroups[0];
sparklinegroup.LineWeight = 2.5;
sparklinegroup.Points.Markers.Color.Color = Color.Red;
sparklinegroup.Points.Markers.Visible = true;
sparklinegroup.SeriesColor.Color = Color.Purple;

Slicer
GcExcel .NET allows users to add slicer in spreadsheets in order to enable them to perform quick filtration of the data in
tables and pivot tables.

Using slicer in a worksheet involves the following tasks:

Add Slicer in Table
Add Slicer in Pivot Table
Use Do Filter Operation
Slicer Style
Export Slicers

Add Slicer in Table
In GcExcel .NET, you can use slicer in a table by accessing the properties and methods of the ISlicer
interface, ISlicerCache interface, and ISlicerCaches interface.

To add slicer in your table, you need to first invoke the Add method of the ISlicerCaches interface to create a new slicer
cache for your table.

Refer to the following example code to add slicer in table.

C#

// Defining source data
object[,] sourceData = new object[,] {
 { "Order ID", "Product", "Category", "Amount", "Date",
"Country" },
 { 1, "Carrots", "Vegetables", 4270, new DateTime(2012, 1, 6), "United

Documents for Excel, .NET Edition 315

Copyright © 2021 GrapeCity, Inc. All rights reserved.

States" },
 { 2, "Broccoli", "Vegetables", 8239, new DateTime(2012, 1, 7), "United
Kingdom" },
 { 3, "Banana", "Fruit", 617, new DateTime(2012, 1, 8), "United
States" },
 { 4, "Banana", "Fruit", 8384, new DateTime(2012, 1, 10),
"Canada" },
 { 5, "Beans", "Vegetables", 2626, new DateTime(2012, 1, 10),
"Germany" },
 { 6, "Orange", "Fruit", 3610, new DateTime(2012, 1, 11), "United
States" },
 { 7, "Broccoli", "Vegetables", 9062, new DateTime(2012, 1, 11),
"Australia" },
 { 8, "Banana", "Fruit", 6906, new DateTime(2012, 1, 16), "New
Zealand" },
 { 9, "Apple", "Fruit", 2417, new DateTime(2012, 1, 16),
"France" },
 { 10, "Apple", "Fruit", 7431, new DateTime(2012, 1, 16),
"Canada" },
 { 11, "Banana", "Fruit", 8250, new DateTime(2012, 1, 16),
"Germany" },
 { 12, "Broccoli", "Vegetables", 7012, new DateTime(2012, 1, 18), "United
States" },
 { 13, "Carrots", "Vegetables", 1903, new DateTime(2012, 1, 20),
"Germany" },
 { 14, "Broccoli", "Vegetables", 2824, new DateTime(2012, 1, 22),
"Canada" },
 { 15, "Apple", "Fruit", 6946, new DateTime(2012, 1, 24),
"France" },
};
// Initialize the workbook and fetch the default worksheet
Workbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];
// Adding data to the table
worksheet.Range["A1:F16"].Value = sourceData;
ITable table = worksheet.Tables.Add(worksheet.Range["A1:F16"], true);
ISlicerCache cache = workbook.SlicerCaches.Add(table, "Category", "categoryCache");
// Add slicer for table
ISlicer slicer1 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "cate1", "Category",
200, 200, 100, 200);
ISlicer slicer2 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "cate2", "Category",
100, 100, 100, 200);

Add Slicer in Pivot Table
In GcExcel .NET, you can use slicer to organize data in pivot table and multi pivot table by accessing the properties and
methods of the IPivotCache Interface,IPivotCaches Interface,IPivotField Interface,IPivotFields Interface,IPivotTable

Documents for Excel, .NET Edition 316

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Interface,IPivotTables InterfaceIPivotItem Interface.

To add slicer in a pivot table, you need to first invoke the Add method of the ISlicerCaches interface to create a new slicer
cache for your pivot table.

Refer to the following example code to add slicer in a pivot table.

C#

// Defining source data
object[,] sourceData = new object[,] {
 { "Order ID", "Product", "Category", "Amount", "Date",
"Country" },
 { 1, "Carrots", "Vegetables", 4270, new DateTime(2012, 1, 6), "United
States" },
 { 2, "Broccoli", "Vegetables", 8239, new DateTime(2012, 1, 7), "United
Kingdom" },
 { 3, "Banana", "Fruit", 617, new DateTime(2012, 1, 8), "United
States" },
 { 4, "Banana", "Fruit", 8384, new DateTime(2012, 1, 10),
"Canada" },
 { 5, "Beans", "Vegetables", 2626, new DateTime(2012, 1, 10),
"Germany" },
 { 6, "Orange", "Fruit", 3610, new DateTime(2012, 1, 11), "United
States" },
 { 7, "Broccoli", "Vegetables", 9062, new DateTime(2012, 1, 11),
"Australia" },
 { 8, "Banana", "Fruit", 6906, new DateTime(2012, 1, 16), "New
Zealand" },
 { 9, "Apple", "Fruit", 2417, new DateTime(2012, 1, 16),
"France" },
 { 10, "Apple", "Fruit", 7431, new DateTime(2012, 1, 16),
"Canada" },
 { 11, "Banana", "Fruit", 8250, new DateTime(2012, 1, 16),
"Germany" },
 { 12, "Broccoli", "Vegetables", 7012, new DateTime(2012, 1, 18), "United
States" },
 { 13, "Carrots", "Vegetables", 1903, new DateTime(2012, 1, 20),
"Germany" },
 { 14, "Broccoli", "Vegetables", 2824, new DateTime(2012, 1, 22),
"Canada" },
 { 15, "Apple", "Fruit", 6946, new DateTime(2012, 1, 24),
"France" },
};
// Initialize the workbook and fetch the default worksheet
Workbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];
// Adding data to the pivot table
worksheet.Range["A1:F16"].Value = sourceData;

Documents for Excel, .NET Edition 317

Copyright © 2021 GrapeCity, Inc. All rights reserved.

IPivotCache pivotcache = workbook.PivotCaches.Create(worksheet.Range["A1:F16"]);
IPivotTable pivottable1 = worksheet.PivotTables.Add(pivotcache, worksheet.Range["K5"],
"pivottable1");
IPivotTable pivottable2 = worksheet.PivotTables.Add(pivotcache, worksheet.Range["O15"],
"pivottable2");

IPivotField field_product1 = pivottable1.PivotFields[1];
field_product1.Orientation = PivotFieldOrientation.RowField;

IPivotField field_Amount1 = pivottable1.PivotFields[3];
field_Amount1.Orientation = PivotFieldOrientation.DataField;

IPivotField field_product2 = pivottable2.PivotFields[5];
field_product2.Orientation = PivotFieldOrientation.RowField;

IPivotField field_Amount2 = pivottable2.PivotFields[2];
field_Amount2.Orientation = PivotFieldOrientation.DataField;
field_Amount2.Function = ConsolidationFunction.Count;

//Slicer just control pivot table1.
ISlicerCache cache = workbook.SlicerCaches.Add(pivottable1, "Product");
ISlicer slicer1 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "p1", "Product", 20,
20, 100, 200);

Refer to the following example code to add slicer in a multi pivot table.

C#

ISlicerCache cache = workbook.SlicerCaches.Add(pivottable1, "Product");
ISlicer slicer1 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "p1", "Product", 20,
20, 100, 200);
cache.PivotTables.AddPivotTable(pivottable2);

Use Do Filter Operation
You can set slicer filters to analyse bulk information in a spreadsheet quickly and efficiently.

Use slicer do-filter operation

Refer to the following example code to use slicer to perform do-filter operation.

C#

// Adding data to the table
worksheet.Range["A1:F16"].Value = sourceData;
ITable table = worksheet.Tables.Add(worksheet.Range["A1:F16"], true);
ISlicerCache cache = workbook.SlicerCaches.Add(table, "Category", "categoryCache");

Documents for Excel, .NET Edition 318

Copyright © 2021 GrapeCity, Inc. All rights reserved.

// Add slicer for table
ISlicer slicer1 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "cate1", "Category",
200, 200, 100, 200);
ISlicer slicer2 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "cate2", "Category",
100, 100, 100, 200);

//do filter operation.
slicer1.SlicerCache.SlicerItems["Vegetables"].Selected = false;

Clear slicer filter

Refer to the following example code to clear slicer filter.

C#

// Adding data to the table
worksheet.Range["A1:F16"].Value = sourceData;
ITable table = worksheet.Tables.Add(worksheet.Range["A1:F16"], true);
ISlicerCache cache = workbook.SlicerCaches.Add(table, "Category", "categoryCache");
// Add slicer for table
ISlicer slicer1 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "cate1", "Category",
200, 200, 100, 200);
ISlicer slicer2 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "cate2", "Category",
100, 100, 100, 200);

//do filter operation.
slicer1.SlicerCache.SlicerItems["Vegetables"].Selected = false;

//clear filter.
slicer1.SlicerCache.ClearAllFilters();

Slicer Style
When you create a slicer, it is mandatory to create a slicer cache first and then use the slicer cache created base on the
column of the table or the pivot table.

The SlicerCaches collection in GcExcel .NET holds all the slicer caches in the workbook.

Set slicer to built-in style

You can set your slicer to built-in style by using the Style property of the ISlicer interface.

Refer to the following example code to set slicer to built-in style.

C#

//create slicer cache for table.
ISlicerCache cache = workbook.SlicerCaches.Add(table, "Category", "categoryCache");

//add slicer

Documents for Excel, .NET Edition 319

Copyright © 2021 GrapeCity, Inc. All rights reserved.

ISlicer slicer1 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "cate1", "Category",
200, 200, 100, 200);

//set slicer style to build in style.
slicer1.Style = workbook.TableStyles["SlicerStyleLight1"];

Modify Slicer with Custom Style
In GcExcel .NET, you can define your own custom style and add it in the slicer cache to modify your slicer as per your
preferences.

Refer to the following example code to see how you can modify your slicer with custom style.

C#

//create slicer cache for table.
ISlicerCache cache = workbook.SlicerCaches.Add(table, "Category", "categoryCache");

//add slicer
ISlicer slicer1 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "cate1", "Category",
200, 200, 100, 200);

ITableStyle slicerStyle = workbook.TableStyles.Add("test");
slicerStyle.ShowAsAvailableSlicerStyle = true;
slicerStyle.TableStyleElements[TableStyleElementType.WholeTable].Font.Name = "Arial";
slicerStyle.TableStyleElements[TableStyleElementType.WholeTable].Font.Bold = false;
slicerStyle.TableStyleElements[TableStyleElementType.WholeTable].Font.Italic = false;
slicerStyle.TableStyleElements[TableStyleElementType.WholeTable].Font.Color =
Color.White;
slicerStyle.TableStyleElements[TableStyleElementType.WholeTable].Borders.Color =
Color.Red;
slicerStyle.TableStyleElements[TableStyleElementType.WholeTable].Interior.Color =
Color.Green;

slicer1.Style = slicerStyle;

Modify Table Layout for Slicer Style
You can modify the table layout for the slicer style applied in your spreadsheet by modifying some settings including
the RowHeight property and DisplayHeader property of the ISlicer interface.

Refer to the following example code to modify table layout for slicer style.

C#

//create slicer cache for table.

Documents for Excel, .NET Edition 320

Copyright © 2021 GrapeCity, Inc. All rights reserved.

ISlicerCache cache = workbook.SlicerCaches.Add(table, "Category", "categoryCache");

//add slicer
ISlicer slicer1 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "cate1", "Category",
200, 200, 100, 200);

slicer1.NumberOfColumns = 2;
//slicer1.ColumnWidth = 10;
slicer1.RowHeight = 50;
slicer1.DisplayHeader = false;

Print Settings
GcExcel .NET supports the Page Setup options in order to enable users to manage printing in an efficient manner.

With different page set up options, you can customize the page layout including size, header, footer, margins, orientation
etc. along with other important paper settings while printing.

Configure Page Header and Footer
Configure Page Settings
Configure Page Breaks
Configure Paper Settings
Configure Print Area
Configure Columns to Repeat at Left and Right
Configure Rows to Repeat at Top and Bottom
Configure Sheet Print Settings
Configure Paper Source

Configure Page Header and Footer
In GcExcel .NET, you can use the LeftHeader property, LeftFooter property, CenterFooter property, RightHeader
property, CenterHeader property, and the RightFooter property of the IPageSetup interface in order to configure
header and footer for a page.

C#

//Configure PageHeader and PageFooter
//Set header for the page
worksheet.PageSetup.LeftHeader = "&\"Arial,Italic\"LeftHeader";
worksheet.PageSetup.CenterHeader = "&P";

//Set footer graphic for the page
worksheet.PageSetup.CenterFooter = "&G";
worksheet.PageSetup.CenterFooterPicture.Filename = @"Resource\logo.png";

For special settings, you can also perform the following tasks in order to customize the configuration of the header and

Documents for Excel, .NET Edition 321

Copyright © 2021 GrapeCity, Inc. All rights reserved.

footer of your page:

1. Configure first page header and footer
2. Configure even page header and footer

Configure first page header and footer

If you want a different header and footer in your first page, you first need to set the DifferentFirstPageHeaderFooter
property of the IPageSetup interface to true. When this is done, you can use the properties of the IPageSetup interface in
order to configure the first page header and footer.

C#

//Set first page header and footer
worksheet.PageSetup.DifferentFirstPageHeaderFooter = true;

worksheet.PageSetup.FirstPage.CenterHeader.Text = "&T";
worksheet.PageSetup.FirstPage.RightFooter.Text = "&D";

//Set first page header and footer graphic
worksheet.PageSetup.FirstPage.LeftFooter.Text = "&G";
worksheet.PageSetup.FirstPage.LeftFooter.Picture.Filename = @"Resource\logo.png";

Configure even page header and footer

If you want a different header and footer for all the even pages, you first need to set
the OddAndEvenPagesHeaderFooter property to true. When this is done, you can use the properties of the IPageSetup
interface in order to configure the even page header and footer.

C#

//Set even page header and footer
worksheet.PageSetup.OddAndEvenPagesHeaderFooter = true;

worksheet.PageSetup.EvenPage.CenterHeader.Text = "&T";
worksheet.PageSetup.EvenPage.RightFooter.Text = "&D";

//Set even page header and footer graphic
worksheet.PageSetup.EvenPage.LeftFooter.Text = "&G";
worksheet.PageSetup.EvenPage.LeftFooter.Picture.Filename = @"Resource\logo.png";

Configure Page Settings
In GcExcel .NET, you can use the properties of the IPageSetup interface in order to configure page settings.

Configuring page settings involves the following tasks:

1. Configure Page Margins
2. Configure Page Orientation

Documents for Excel, .NET Edition 322

Copyright © 2021 GrapeCity, Inc. All rights reserved.

3. Configure Page Order
4. Configure Page Center
5. Configure First Page Number

Configure Page Margins

You can use the TopMargin property, RightMargin property and BottomMargin property of the IPageSetup interface
in order to configure margins for a page.

C#

//Set page margins, in points.
worksheet.PageSetup.TopMargin = 36;
worksheet.PageSetup.BottomMargin = 36;
worksheet.PageSetup.RightMargin = 72;

Note: While you set margins for your page, it is necessary to ensure that it should not be less than Zero.

Configure Page Orientation

You can use the Orientation property of the IPageSetup interface in order to set the orientation for a page to Portrait or
Landscape as per your preferences.

C#

//Set page orientation.

worksheet.PageSetup.Orientation = PageOrientation.Landscape;

Configure Page Order

You can use the Order property of the IPageSetup interface in order to configure the order of the page as per your
choice.

C#

//Set page order. The default value is DownThenOver.

 worksheet.PageSetup.Order = Order.OverThenDown;

Configure Page Center

You can use the CenterHorizontally property and the CenterVertically property of the IPageSetup interface in order to
configure the center of your page according to your preferences.

C#

//Set center. The default value is false.

worksheet.PageSetup.CenterHorizontally = true;

Documents for Excel, .NET Edition 323

Copyright © 2021 GrapeCity, Inc. All rights reserved.

worksheet.PageSetup.CenterVertically = true;

Configure First Page Number

You can use the FirstPageNumber property of the IPageSetup interface in order to configure the number for your first
page as per your choice.

C#

//Set first page number. The default value is p1.

worksheet.PageSetup.FirstPageNumber = 3;

Configure Page Breaks
GcExcel .NET allows users to configure the vertical and horizontal page breaks by using the VPageBreaks property
and HPageBreaks property of the IWorksheet interface. You can also determine whether to adjust the horizontal and
vertical page breaks or keep them fixed (while performing the insert and delete operations on the rows and columns) by
using the FixedPageBreaks property of the IWorksheet interface.

This feature is useful especially when users need to print different reports from Excel to a PDF file. With the option to
choose whether to adjust page breaks or keep them fixed, users can specify whether each section appears on a separate
page or starts from a new page whenever any rows and columns are inserted or deleted in a spreadsheet.

If the FixedPageBreaks property is set to false (this is the default behavior), then:

The horizontal and vertical page breaks are adjusted when the rows and columns are inserted or deleted from the
worksheet.
The row or column index of the page break is increased or decreased according to the inserted and deleted rows
or columns based on the following conditions:

If the inserted or deleted rows or columns exist after the page break, the row or column index of the page
break remains unchanged.
If the deleted rows or columns are present before the page break, the row or column index of the page
break is decreased accordingly.
If the deleted rows or columns contain the page break, the page break will be removed.

If the FixedPageBreaks property is set to true, the row or column index of page breaks are not changed even after
inserting or deleting rows or columns. Further, the horizontal and vertical page breaks are considered "fixed" and the page
breaks can't be adjusted in this scenario.

Refer to the following example code in order to configure page breaks for customized printing.

C#

// Initialize workbook
Workbook workbook = new Workbook();

// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

Documents for Excel, .NET Edition 324

Copyright © 2021 GrapeCity, Inc. All rights reserved.

object[,] data = new object[,]{
{"Name", "City", "Birthday", "Sex", "Weight", "Height", "Age"},
{"Bob", "NewYork", new DateTime(1968, 6, 8), "male", 80, 180, 56},
{"Betty", "NewYork", new DateTime(1972, 7, 3), "female", 72, 168, 45},
{"Gary", "NewYork", new DateTime(1964, 3, 2), "male", 71, 179, 50},
{"Hunk", "Washington", new DateTime(1972, 8, 8), "male", 80, 171, 59},
{"Cherry", "Washington", new DateTime(1986, 2, 2), "female", 58, 161, 34},
{"Coco", "Virginia", new DateTime(1982, 12, 12), "female", 58, 181, 45},
{"Lance", "Chicago", new DateTime(1962, 3, 12), "female", 49, 160, 57},
{ "Eva", "Washington", new DateTime(1993, 2, 5), "female", 71, 180, 81}};

// Set data
worksheet.Range["A1:G9"].Value = data;

// Add a horizontal page break before the fourth row
var hPageBreak = worksheet.HPageBreaks.Add(worksheet.Range["F4"]);

// Add a vertical page break before the third column
var vPageBreak = worksheet.VPageBreaks.Add(worksheet.Range["F3"]);

// Saving workbook to xlsx
workbook.Save(@"PageBreaks.xlsx", SaveFileFormat.Xlsx);

// Delete rows and columns before the page breaks, the page breaks will be adjusted
worksheet.Range["1:2"].Delete(); // the hPageBreak is before the fourth row
worksheet.Range["B:C"].Delete(); // the vPageBreak is before the fourth column

// Set the page breaks are fixed, it will not be adjusted when inserting/ deleting rows/
columns
worksheet.FixedPageBreaks = true;

// Saving the edited workbook to xlsx
workbook.Save(@"PageBreaksAfterDeletingRows&ColumnsWithFixedPageBreaks.xlsx",
SaveFileFormat.Xlsx);

// Delete rows and columns after the page breaks, the page breaks will not be adjusted
worksheet.Range["1:2"].Delete(); // the hPageBreak is still before the fourth row
worksheet.Range["B:C"].Delete(); // the vPageBreak is still before the fourth column

// Insert rows
worksheet.Range["A3:A5"].EntireRow.Insert(); // Inserting rows after deleting row and
column ranges

// Saving the finalized workbook to xlsx
workbook.Save(@"PageBreakAfterDeletingRows&Columns.xlsx", SaveFileFormat.Xlsx);

Documents for Excel, .NET Edition 325

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Configure Paper Settings
In GcExcel .NET, you can use the properties of the IPageSetup interface in order to configure paper settings for
customized printing.

Configuring paper settings involves the following tasks:

1. Configure Paper Scaling
2. Configure Paper Size

Configure Paper Scaling

You can use the IsPercentScale property in order to control how to the spreadsheet is scaled; the FitToPagesTall
property and the FitToPagesWide property in order to set its size; and the Zoom property in order to adjust the size of
the paper that will be used for printing.

C#

//Set paper scaling via percent scale

worksheet.PageSetup.IsPercentScale = true;
worksheet.PageSetup.Zoom = 150;

//Set paper scaling via FitToPagesWide and FitToPagesTall

worksheet.PageSetup.IsPercentScale = false;
worksheet.PageSetup.FitToPagesWide = 3;
worksheet.PageSetup.FitToPagesTall = 4;

Configure Paper Size

You can use the PaperSize property in order to set the paper size for the paper that will be used for printing.

C#

//Set built-in paper size. The Default is Letter

worksheet.PageSetup.PaperSize = PaperSize.A4;

Configure Print Area
At times, you may want to print only a specific area in a worksheet instead of printing the whole worksheet.

GcExcel .NET supports customized printing by allowing users to select a range of cells in order to configure the desired
print area in a worksheet. This can be done by using the PrintArea property of the IPageSetup interface.

Documents for Excel, .NET Edition 326

Copyright © 2021 GrapeCity, Inc. All rights reserved.

C#

//Set print area in the worksheet
worksheet.PageSetup.PrintArea = "D5:G10";

Configure Columns to Repeat at Left and Right
You can configure columns in a worksheet in order to repeat them at the left by using the PrintTitleColumns
property and at the right by using the PrintTailColumns property of the IPageSetup interface.

This feature is useful especially when you're using GcExcel .NET to create reports wherein you want to repeat specific title
columns and tail columns in the exported file. With support for repeating specific columns at the left and right side of the
page; it becomes much easier and quicker to handle and visualize spreadsheets containing large number of columns.

While exporting a spreadsheet with repeating columns to a PDF file, the tail columns will be exported only when its index
is larger than the page's last column's index. Otherwise, the tail column is ignored. For instance, if the Print Area is
"A1:J200" and the right repeating column is "$I:$J"; it will print "$I:$J" repeatedly on each page. However, if users set the
right repeating column to "$K:$L", then it will not print "$K:$L" (because the column index is larger than print area).

Refer to the following example code in order to configure columns to repeat at the right.

C#

// Initialize workbook
Workbook workbook = new Workbook();

// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

// Populating cells in worksheet
var range = worksheet.Range["A1:J200"];
for (int i = 0; i < 200; i++)
 for (int j = 0; j < 8; j++)
 {
 range.Cells[i, j].Value = i.ToString();
 range.Cells[i, 8].Value = "Col I";
 range.Cells[i, 9].Value = "Col J";
 }

// Repeat Columns from I to J at the right of each page while saving PDF
worksheet.PageSetup.PrintTailColumns = "$I:$J";

// Saving workbook to PDF
workbook.Save(@"ConfigureTailColumns.pdf", SaveFileFormat.Pdf);

Refer to the following example code in order to configure columns to repeat at the left.

C#

Documents for Excel, .NET Edition 327

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//Set columns to repeat at left
worksheet.PageSetup.PrintTitleColumns = "$D:$G";

Configure Rows to Repeat at Top and Bottom
You can configure rows in a worksheet in order to repeat them at the top by using the PrintTitleRows property and at
the bottom using the PrintTailRows property of the IPageSetup interface.

While exporting a spreadsheet with repeating rows to a PDF file, the tail rows will be exported only when its index is larger
than the page's last row's index. Otherwise, the tail row is ignored. For instance, if the Print Area is "B5:H23" and the top
repeating row is "$3:$3"; it will print "$3:$3" repeatedly on each page. However, if users set the top repeating row to
"$30:$30", then it will not print "$30:$30" (because the row index is larger than print area).

Refer to the following example code in order to configure rows to repeat at the bottom.

C#

// Initialize workbook
Workbook workbook = new Workbook();

// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

// Populating cells in worksheet
var range = worksheet.Range["A1:J200"];
for (int i = 0; i < 200; i++)
 for (int j = 0; j < 10; j++)
 {
 range.Cells[i, j].Value = i.ToString();
 range.Cells[199, j].Value = "Row 199";
 }

//Repeat Row 200 at the bottom of each page while saving PDF
worksheet.PageSetup.PrintTailRows = "$200:$200";

// Saving workbook to PDF
workbook.Save(@"ConfigureTailRows.pdf", SaveFileFormat.Pdf);

Refer to the following example code in order to configure rows to repeat at the top.

C#

//Set rows to repeat at top
worksheet.PageSetup.PrintTitleRows = "$5:$10";

Configure Sheet Print Settings

Documents for Excel, .NET Edition 328

Copyright © 2021 GrapeCity, Inc. All rights reserved.

You can set the PrintGridlines property, PrintHeadings property, BlackAndWhite property, PrintComments
property and PrintErrors property of the IPageSetup interface in order to configure the print settings for the sheet.

C#

//Configure sheet print settings

worksheet.PageSetup.PrintGridlines = true;
worksheet.PageSetup.PrintHeadings = true;
worksheet.PageSetup.BlackAndWhite = true;
worksheet.PageSetup.PrintComments = PrintLocation.InPlace;
worksheet.PageSetup.PrintErrors = PrintErrors.Dash;

Configure Paper Source
GcExcel allows you to configure the paper source while printing a PDF document. It lets you control whether the PDF page
size should be used to select the input paper tray while printing. This can be done by using the PickTrayByPDFSize
property of the ViewerPreferences class.

Refer to the following example code to configure paper source while printing a PDF document.

C#

// Initialize workbook
Workbook workbook = new Workbook();

// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

worksheet.Range["A1"].Value = "GrapeCity Documents for Excel";
worksheet.Range["A1"].Font.Size = 25;

// create a pdfSaveOptions object before using ViewerPreferences
PdfSaveOptions pdfSaveOptions = new PdfSaveOptions();

// PDF page size is used to select the input paper tray when printing
pdfSaveOptions.ViewerPreferences.PickTrayByPDFSize = true;

// Save the workbook into pdf file
workbook.Save("PickTrayByPDFSize.pdf", pdfSaveOptions);

The paper source setting appears in the 'Print' dialog box of PDF document as shown below:

Documents for Excel, .NET Edition 329

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Logging
GcExcel supports logging which allows you to capture logs and resolve issues by finding out their root cause. You
can store different log levels like debug, error, warning or information based on the configuration in JSON file.

Along with other external libraries, GcExcel uses Microsoft.Extensions.Logging library to implement the logging system.
The logging information is supported for Json and Excel I/O and PDF exporting. Logging is disabled by default. To enable
it, Workbook.LoggerFactory property needs to be set while initializing the application or website which is explained in
detail in the next section.

Enable Logging

Follow the below steps to enable logging in GcExcel. The logs will be printed to console and saved to a file.

1. Create a new console app and install the following nuget packages:
Microsoft.Extensions.Logging.Console
Microsoft.Extensions.Configuration.Json
Serilog.Extensions.Logging.File
If your project targets .NET Framework, Microsoft.Extensions.Logging.Abstractions also needs be installed.

2. Write a method for creating logger factory as shown below:
C#

Documents for Excel, .NET Edition 330

Copyright © 2021 GrapeCity, Inc. All rights reserved.

private static ILoggerFactory CreateLoggerFactory()
{
 var builder = new ConfigurationBuilder().
 SetBasePath(Directory.GetCurrentDirectory()).
 AddJsonFile("appsettings.json", optional: true, reloadOnChange: true);
 var cfgRoot = builder.Build();
 var loggingCfg = cfgRoot.GetSection("Logging");
 var factory = LoggerFactory.Create(
 logBuilder => logBuilder.AddConfiguration(loggingCfg).AddConsole());
 factory.AddFile(loggingCfg);
 return factory;
}

3. Attach the logger factory to workbook as shown below:
C#

static void Main(string[] args)
{
 using (var loggerFactory = CreateLoggerFactory())
 {
 Workbook.LoggerFactory = loggerFactory;
 var wb = new Workbook();
 try
 {
 wb.Save("test.pdf");
 }
 catch (Exception)
 { }
 }
}

4. Create a new json file in your project and name it as 'appsettings.json'. Set "Copy to output directory" to "Copy if
newer" in properties window. If the file exists already, merge its content with existing file and
appsettings.development.json. You can also refer Configure Serilog File Logs for more information about it.

Documents for Excel, .NET Edition 331

Copyright © 2021 GrapeCity, Inc. All rights reserved.

https://github.com/serilog/serilog-extensions-logging-file

5. Add the following setting to appsettings.json file.

JSON

{
 "Logging": {
 "LogLevel": {
 "Default": "Information"
 },
 "PathFormat": "log-{Date}.txt"
 }
}

6. Run the project to observe that logs are printed to console and saved to log file 'log-yyyyMMdd.txt'.

Set Log Level

GcExcel allows you to capture four log levels, namely, debug, info, warn and error. Their priority order is:

debug < info < warn < error

You can configure which log level needs to be printed to the log file. After setting the log level, the logs with higher or
equal priority are included in the printed logs while the logs with lower priority are ignored. For example, If you set the log
level to "info", the info, warn and error logs are printed, while the "debug" logs are ignored.

The following setting in appsettings.json sets the default log level to "warning" and GcExcel log level to "Information".

JSON

{
 "Logging": {
 "LogLevel": {
 "Default": "Warning",
 "GrapeCity.Documents.Excel": "Information"
 }

Documents for Excel, .NET Edition 332

Copyright © 2021 GrapeCity, Inc. All rights reserved.

https://github.com/serilog/serilog-extensions-logging-file

 }
}

Similarly, the following setting in appsettings.json sets the GcExcel log level of console output to "Information".

JSON

{
 "Logging": {
 "LogLevel": {
 "Default": "Warning"
 },
 "Console": {
 "LogLevel": {
 "GrapeCity.Documents.Excel": "Information"
 }
 }
 }
}

 For more information, you can also refer to Logging in .NET Core and ASP.NET Core.

Save Log Records with Thread ID

You can also choose to print thread ID along with the logs in log files. This is particularly helpful to analyse the
specific process or thread creating an issue. The appsettings file uses Microsoft.Extensions.Logging format to generate the
logs.

Note: This example does not use serilog-settings-configuration because it usually reports type load errors.

Follow the below steps to save logs with thread ID:

1. Install the following nuget packages:
Microsoft.Extensions.Configuration.Json
Microsoft.Extensions.Logging
Microsoft.Extensions.Logging.Configuration
Serilog.Enrichers.Thread
Serilog.Extensions.Logging
Serilog.Sinks.RollingFil
If your project targets .NET Framework, Microsoft.Extensions.Logging.Abstractions also needs to be installed

2. Write methods for creating a logger factory as shown below:
C#

private static ILoggerFactory CreateLoggerFactory()
{
 var appSettings = new ConfigurationBuilder().
 SetBasePath(Directory.GetCurrentDirectory()).
 AddJsonFile("appsettings.json", optional: true, reloadOnChange: true).

Documents for Excel, .NET Edition 333

Copyright © 2021 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging/?view=aspnetcore-5.0
https://github.com/serilog/serilog-settings-configuration

 Build();
 var loggingSection = appSettings.GetSection("Logging");
 var serilogConfig = new LoggerConfiguration();
 ConfigureSerilog(loggingSection, serilogConfig);
 var factory = new LoggerFactory();
 factory.AddSerilog(serilogConfig.CreateLogger());
 return factory;
}

private static void ConfigureSerilog(IConfigurationSection loggingSection,
 LoggerConfiguration loggerCfg)
{
 loggerCfg.Enrich.WithThreadId();
 string pathFormat = loggingSection["PathFormat"];
 string outputTemplate = loggingSection["OutputTemplate"];
 loggerCfg.WriteTo.RollingFile(pathFormat, outputTemplate: outputTemplate);
 ConfigureMinLevel(loggerCfg.MinimumLevel, loggingSection);
}

private static void ConfigureMinLevel(LoggerMinimumLevelConfiguration minimumLevel,
 IConfigurationSection loggingCfgSection)
{
 var logLevelSection = loggingCfgSection.GetSection("LogLevel");
 int pathLength = logLevelSection.Path.Length;
 foreach (var logItem in logLevelSection.AsEnumerable())
 {
 if (logItem.Key.Length <= pathLength)
 {
 continue;
 }
 string name = logItem.Key.Substring(pathLength + 1);
 if (Enum.TryParse(logItem.Value, ignoreCase: true, out LogLevel level))
 {
 var serilogLevel = (LogEventLevel)level;
 if (name == "Default")
 {
 minimumLevel.Is(serilogLevel);
 }
 else
 {
 minimumLevel.Override(name, serilogLevel);
 }
 }
 }
}

3. Attach the logger factory to workbook as shown below:

Documents for Excel, .NET Edition 334

Copyright © 2021 GrapeCity, Inc. All rights reserved.

C#

 static void Main(string[] args)
 {
 static void Main()
{
 using (ILoggerFactory loggerFactory = CreateLoggerFactory())
 {
 Workbook.LoggerFactory = loggerFactory;
 Workbook wb = new Workbook();
 try
 {
 wb.Save("test.pdf")
 }
 catch(Exception)
 { }
 }
}
 }

4. Create a new json file in your project and name it as 'appsettings.json'. Set "Copy to output directory" to "Copy if
newer" in properties window. If the file exists already, merge its content with existing file and
appsettings.development.json.
C#

{
 "Logging": {
 "LogLevel": {
 "Default": "Warning",
 "GrapeCity.Documents.Excel": "Debug"
 },
 "PathFormat": "log-{Date}.txt",
 "OutputTemplate": "{Timestamp:yyyy-MM-dd HH:mm:ss.fff zzz} (Thread {ThreadId})
[{Level}] {Message}{NewLine}{Exception}"
 }
}

Here,
"LogLevel" section has the same schema as Microsoft.Extensions.Logging.
"PathFormat" section specifies the name of log file.
"OutputTemplate" section specifies the format of each log record.

5. Run the project. Logs will be saved to log-yyyyMMdd.txt and the sample output will look like below:
Text

2020-09-10 11:44:30.566 +08:00 (Thread 1) [Debug] Save pdf of the workbook.
 2020-09-10 11:44:30.615 +08:00 (Thread 1) [Debug] Paginate Start(Workbook)
 2020-09-10 11:44:31.104 +08:00 (Thread 1) [Debug] GetDigitWidthOfDefaultStyle
GraphicsType: Pdf

Documents for Excel, .NET Edition 335

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 2020-09-10 11:44:31.108 +08:00 (Thread 1) [Debug] GetDigitWidthOfDefaultStyle
DefaultFont: "FontName = Calibri
 FontSize = 11
 Bold = False
 Italic = False
 ScreenWidth = 0
 PDFWidth = 5.5751953125
 "
 2020-09-10 11:44:31.161 +08:00 (Thread 1) [Debug] Count of print ranges: 0
 2020-09-10 11:44:31.161 +08:00 (Thread 1) [Debug] Paginate End(Workbook)
 2020-09-10 11:44:31.164 +08:00 (Thread 1) [Error] There is no content to print.

Documents for Excel, .NET Edition 336

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Templates
Report generation is crucial for creating marketing strategies, project management, product development cycles, budgeting
estimates and growth strategies. It is a common requirement of any business domain. Excel reports are periodically generated
and consume a considerable amount of time and effort. However, the chances of manual error cannot be eliminated altogether.
That's where the use of templates finds its place. GcExcel provides templates to create highly effective and well-designed Excel
reports.

Some of the powerful features provided by GcExcel templates are as follows:

Flexible: GcExcel templates have a highly flexible template syntax and API to bind Excel documents to data. It follows easy
data population rules in fields.

Efficient: GcExcel templates provide extended reusability. This means the templates can be used with minor
modifications, or as it is time and again, saving both time and effort.

Multi-platform: GcExcel templates are supported on Windows, Linux and macOS.

Multi-domain: GcExcel templates cater to complex use-cases to create Excel reports for any scenario.

The GcExcel template is a pre-defined and formatted workbook. It can be used in the creation of final reports. In the following
sections, you will find GcExcel templates used in three diverse use-cases.

Use Case 1 - Financial Statistics Report

In this use-case, we have created a Financial dashboard template to show the Budget statistics of different countries in
different seasons or quarters. Here, in the template, the cell A1 contains the title of the template, and the cell D1 contains
the year gap for which the financial data has been recorded. Note that here 'ds' is the data source that will populate the
country names and quarterly seasons in the Excel report. The names such as BUDGET STATISTICS, BUD and ACT are other
data fields of ds. The country field is expanded horizontally to add other countries. Various function fields are used to
perform calculations on the Budget and Actual columns.

You can also download the Excel template layout used in below example.

Documents for Excel, .NET Edition 337

Copyright © 2021 GrapeCity, Inc. All rights reserved.

The Excel report generated from the Financial Dashboard template is given below:

Use Case 2 - Department & Budget Report

In this template, the budget of each department is depicted based on the salaries of employees in that department. Here,
'ds' is the data source and it populates data fields with the names of departments, managers and employees. The
department data fields are expanded horizontally to add more departments. Note that in each department, the static text
fileds 'Employee' and 'Salary' remains the same. The image below shows the budget report for two departments,
Marketing and Sales.

Documents for Excel, .NET Edition 338

Copyright © 2021 GrapeCity, Inc. All rights reserved.

You can also download the Excel template layout used in below example.

The Excel report generated from the Department & Budget template is given below:

Use Case 3 - Sales Report

This use case depicts a template for recording the E-commerce sales of electronic goods in different areas of a country.
The data source used here is ds, and it populates the data in the final Excel report with categories, names, cities, sales etc.

The Excel report generated in this case displays the sales of electronic goods individually as well as with respect to their
categories. The area and cities are expanded horizontally due to their expansion property. Various function fields are used
to perform calculations on the sales and revenue numbers. The value in cell D14 is calculated, first by summing up the
revenue in cell C14 and then summing up the values of the whole category (as A14 is its context).

You can also download the Excel template layout used in below example.

Documents for Excel, .NET Edition 339

Copyright © 2021 GrapeCity, Inc. All rights reserved.

The Excel report generated from the Sales template is given below:

Template Configuration
Template configuration includes all the features, fields and properties of Templates in GcExcel.

The first step to configure a template is to create a template layout in Excel, which is a pre requisite to generate Excel
reports. This layout defines the outline of how the final report will look like and can include static text, data bound fields
and other template properties.

Except static fields, all other fields follow syntax and are defined in mustache braces {{ }}. These fields can also include
template properties like group, sort, pagebreak etc which are applied on the final Excel report when populated from

Documents for Excel, .NET Edition 340

Copyright © 2021 GrapeCity, Inc. All rights reserved.

the data, in datasource.

Apart from static text, a template layout in Excel is comprised of:

Template Fields
Template Properties

Note: The Excel formulas applied in template layout can be exported as formulas in Excel reports instead of just the
cell values. The formula and its range can be viewed in the formula bar of Excel report by selecting the cell to which it
has been applied. The Excel formula can be exported by using this syntax in template layout: {{= formula }}

For example:

Lets say, {{==SUM(A5)}} formula is applied in a template layout. Now, in the generated Excel, formula displayed on
clicking the formula cell will be SUM(A5:A10), meaning that this is the range on which the formula is applied.

The formula must be syntactically correct and refer to the right range while defining in the template layout.

Templates, in GcExcel, also supports:

Conditional Formatting

Documents for Excel, .NET Edition 341

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Global Settings
Fixed Layout
Default Values in Template Cells
PDF Form Builder
Charts
Tables
Sparklines

Template Fields
A template layout can contain various fields bound to the data source. The below image shows different template fields:

Data Fields

Data fields are the bound fields which are populated by the data in data source. These fields can be defined in different ways as
shown in examples below:

Documents for Excel, .NET Edition 342

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Data field

The data bound fields are defined as: {{ds.FieldName}}, where ds is the alias of the datasource. For example, {{ds.grade}}

Nested data field

If the data is nested, you might want to arrange report as per an inner object field, it can be defined using nested data
fields with the following syntax by separating the nested objects with a '.'

Inline data field

It is defined along with the text in a cell. For example, Date: {{task.dueDate}}

Also, you can define multiple inline data fields from different data sources as shown below:

Function Fields

Function fields are used to perform calculations in your reports. A function can be applied over a cell or a data field. The standard
Excel functions which are supported in the function field are Sum, Count, Average, Max, Min, Product, StdDev, StdDevp, Var and
Varp. For example:

{{=SUM(F4)}}

{{=SUM(team.score)}}

{{=Count(student.name)}}

Note: Function field supports only one parameter

The function fields can also be calculated over a context. for example, in the below image cell D14 contains function field as well
as the context property. The resultant value will be calculated, first by summing up the revenue in cell C14 and then summing up
the values of the whole category (as A14 is its context)

You can also download the Excel template layout used in the below example.

Documents for Excel, .NET Edition 343

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Expression Fields

Expression fields can be used to perform calculations using operators '+', '-', '*', '/' and '()'. An expression can be applied over
cells or data fields. For example:

{{= ds.count*ds.price}}

{{= ds.price + ds.tax}}

{{=A18*0.05}}

{{=A18+D18-G18}}

{{=(A18+ A20)*0.3}}

Note: Template properties are not supported in Expression fields. Function field and Expression field cannot be used
together like {{=Sum(A5+A6)}} or {{=Sum(A5)*0.01}}, which is not supported.

Documents for Excel, .NET Edition 344

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Sheet Name

GcExcel supports using bound field in sheet name, which means, the field value of sheet name is populated by the data in data
source and multiple worksheets are created. Each worksheet contains data corresponding to its value.

For example, if we specify {{dt.Region}} as the sheet name and the data source contains data for 5 regions, the final report
will consist of 5 worksheets and the individual sheet will contain data for a specific region.

Note: Only the Sort and Group template properties are supported for sheet name field.

Template Properties
The template properties are defined along with template fields in round braces () as can be seen in the below image:

Cell Context

The cell context property defines the relationship between cells depending on which the cells are grouped or filtered.

Value: Cell location or Data field

Documents for Excel, .NET Edition 345

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Custom: Cell context must be specified explicitly.

Default (default value): The adjacent cell on the left with E=V, or the adjacent cell on the top with E= H.

None: The cell has no context.

Example

{{ds.field(C=A1, E=H)}}

Hello World! {{(C=A2)}}

{{=SUM(F4) (C=ds1.team)}}

{{=SUM(ds1.score) (C=ds1.team*ds1.season)}}

For more information about Cell Context, refer Cell Context topic.

Cell Expansion

The cell expansion property describes the direction in which the cell values will expand.

Value: Enum

E=N (None)

E=H (Horizontal): Cell data is expanded from left to right.

E=V (Vertical-Default value): Cell data is expanded from top to bottom.

Example

{{ds.field(C=A1, E=H)}}

For more information about Cell Expansion, refer Cell Expansion topic.

Group

The group property allows you to group data in template.

Value: Enum

G=Normal: The group by field(s) value is not repeated for the corresponding records in the column; instead they are
printed once per data group.

G=Merge (default value): The same behavior as for the normal parameter, except that it merges the cells in the group by
field(s) for each group set.

G=Repeat: The group by field(s) value is repeated for the corresponding records.

G=List: The field(s) values are listed independently for the corresponding records.

Example

{{ds.field(G=repeat)}}

{{ds.field(G=list)}}

The below image shows how to apply 'merge' grouping on repeating data. You can also download the Excel template
layout used in below example.

Documents for Excel, .NET Edition 346

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Range

The range property specifies the fallback context for the fields in specified range. All the fields that are covered in the
range which have no default nor explicit context, use the current cell in which the range is defined, as their context.

Value: Cell range

Default value: Null

Example

{{ds.field(R= B3:F10)}}

The below image shows that the range is defined for a student name, specifying that the details will expand and group
with respect to Student name. You can also download the Excel template layout used in below example.

Documents for Excel, .NET Edition 347

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Sort

The sort property specifies the type of sorting in template.

Value: Enum

S=Asc (default value): Ascending

S=Desc : Descending

S=None: None

Example

{{ds.field(S=Desc)}}

The below image shows how the template fields are expanded based on their sorting type. You can also download the
Excel template layout used in below example.

Documents for Excel, .NET Edition 348

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Page Break

The page break property specifies whether to add a new page after a field or not.

If the template cell is located in the first column, horizontal page break is added.
If the template cell is located in the first row, vertical page break is added
If the template cell is located in any other location than the first row and first column, both a horizontal and a
vertical page break is added

Value: Boolean

Pagebreak=True

Pagebreak=False (Default value)

Example

{{ds.field(Pagebreak=true)}}

The below image shows that a page break will be added after 'Category' field. You can also download the Excel template
layout used in below example.

Documents for Excel, .NET Edition 349

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Image

The image property specifies whether to add an image or not and if yes, its height and width can also be specified.

The supported image data type is byte[] and base64 string.

The position of image in the cell can be controlled by setting the horizontal and vertical alignment style of cell. By default,
the image is located in the center of the cell horizontally and vertically, both.

Value: Boolean

Image = True

Image= False (Default value)

Image.width=String value: Default value is cell width.

Image.height=String value: Default value is cell height.

Note: Image property should be set to true in order to set its width or height.

Example

{{ds.icon(Image=true)}}

{{ds.icon(Image=true, Image.width=150px)}}

{{ds.icon(Image=true, Image.height=150px)}}

The below image shows how an image can be added in the Excel report. You can also download the Excel template
layout used in below example.

Documents for Excel, .NET Edition 350

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Documents for Excel, .NET Edition 351

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Cell Expansion
The layout of a template in Excel consists of various fields, some of which are bound to a data source. The value of a
bound field in a template, expands to several cells in report. For example, if you have created a field named 'Color' and
bound it to the data source which contains 10 values for 'Color', the cell will expand to 10 values.

The expansion of a cell depends on the rules explained below:

Vertical Expansion

The cell values will expand vertically if the expansion property of the cell is set to vertical, that is, "E=V", as shown below.
The default expansion setting is vertical, which means if you do not specify any expansion property in the cell, the cell
values will expand vertically.

Horizontal Expansion

The cell values will expand horizontally if the expansion property of the cell is set to horizontal, that is, "E=H", as shown
below:

Documents for Excel, .NET Edition 352

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Cell Context
A template layout can contain multiple bound fields which depend on each other while expansion in the final Excel report.

For example, in the below image, the 'team' and 'name' are two bound fields in the template layout where team is the
former cell and name is the latter cell. Now, the 'name' field will depend on the 'team' field to group or filter its values
based on the team. Also, the direction of expansion of the 'name' field will be decided by the 'team' field. Here, team is
the context cell of name.

Context Relationships

When multiple fields bound to a data source are defined in a template layout, a relationship is established between
them which is called 'Context' relationship. The former cell is called the context cell of latter cell. Based on this
relationship, the data is filtered or grouped while expansion in the final report.

There are two types of context relationships:

Filtering Relationship: The data in the cell is filtered using data of the context cell as the filter condition. For
example, in the below image, the data in the 'name' cell is filtered corresponding to the data in its context cell:

Following Relationship: The data in the cell is grouped according to the expansion direction of the data in context
cell. For example, in the below image, the data in the 'name' cell is grouped and expanded horizontally depending
on its context cell:

Documents for Excel, .NET Edition 353

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Context Cell

The context of a cell is defined using the 'C' property. The data in cells expand vertically or horizontally depending on
their context. A cell's context can be set in the below ways:

None: No cell context (C= None)

Custom: The cell context is specified explicitly using 'C' property

Default: If no context is defined in the cell, the default context cell is the adjacent cell on the left with E=V
(expanding vertically),
or adjacent cell on the top with E= H (expanding horizontally)

For example, in the below image, A1 is the context cell of B1 and expands vertically.

And, A1 is the context cell of A2 and expands horizontally.

Documents for Excel, .NET Edition 354

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Context Precedence

The priority order in which context should be applicable on a cell is determined in the following order:

Explicit context > Default Context > Fallback context

Explicit context: The context defined by C property in the cell itself
Default context: If no context is defined in the cell, the default context is given priority
Fallback context: If there is no adjacent cell value on the left or top, the cell looks for a cell with R
(Range) property which covers its location, and use it as its context.

The Fallback context can be defined in a cell using the Range property, in case no default or explicit context is defined.
The cell that defines the range is followed as a context for other cells to expand.

For example, the below template layout is created to display the sales details for different camera models, which means
the data needs to expand with repect to the model of the camera. Then after a break, the sales details need to be
displayed for another model of the camera. Instead of adding context to every field, we can define the range R=B11:F16
for Camera model - {{ds.Name (R=B11:F16)}}, stating that the sales details need to expand and group with respect to the
camera model.

The above template layout will generate the following Excel report:

Documents for Excel, .NET Edition 355

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Conditional Formatting
Conditional formatting rules can be defined in Template layout which are applied to the expanded cells in Excel report.

For example, the below template layout applies a conditional formatting rule in data field: {{ds.Revenue}}. The rule
specifies to show the cell value in red if it is less than or equal to 500000 and in green if it is equal to or greater than
100000. Also, the icons are displayed alongside cell values.

You can also download the Excel template layout used in below example.

Documents for Excel, .NET Edition 356

Copyright © 2021 GrapeCity, Inc. All rights reserved.

When the template is processed, the conditional formatting rule is applied to the expanded data in the final Excel report
as shown below.

Limitation

If the formula reference in a conditional formatting rule refers to a template cell, it is not handled correctly by GcExcel
Template. The formula is not adjusted after template processing, that is, the formula will remain the same and will not get
updated dynamically with the range.

For example:

If cell B5 has a formula reference in conditional formatting rule "=A5 > 100". And both A5 and B5 are template cells

Documents for Excel, .NET Edition 357

Copyright © 2021 GrapeCity, Inc. All rights reserved.

then after the template processing, conditional formatting rule may be applied from B5:B10 but, it "=A5 > 100" will not
change dynamically with the cell range.

Global Settings
Global settings, in GcExcel Templates, are the settings which when defined are applied throughout the template. These
settings save lots of effort when same properties need to be applied on several fields. Global settings can be applied in all
the template layouts and even in multiple worksheets of a workbook.

The global settings provided by GcExcel template are explained below:

Global Settings Description Value

TemplateOptions.KeepLineSize It specifies whether the row height and
column width should be kept the same
throughout the template

Type: Boolean

Value: True

False (Default Value)

TemplateOptions.InsertMode It specifies whether to insert extra cells or
entire rows and columns when extra space
is needed while expanding the template

Type: String

Value: Cells (Default Value)

EntireRowColumn

TemplateOptions.EmbedFontForFormFields It specifies whether the fonts used by form
fields should be embedded in exported
PDF file.

Note: This setting is only applicable
for PDF form fields

Type: Boolean

Value: True (Default Value)

False

Note: The scope of global settings is within a workbook only, which means, that all the worksheets in a workbook will
apply the global settings.

The global settings can be applied in GcExcel template by using either of the two ways explained below:

Define Global Settings in Template Layout

Global settings can be defined in Template layout in Excel in 'Name Manager' dialog box as shown below. The 'Name
Manager' can be accessed by navigating through Formulas tab > Defined Names group, and then clicking the 'Name
Manager'.

Documents for Excel, .NET Edition 358

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Set Global Settings using Code

The global settings can be defined in GcExcel after loading the Excel template by using built-in workbook defined names
TemplateOptions. The Add method of INames interface can be used to apply the global settings. The method takes
Name and RefersTo properties as the parameters:

The value of Name property in built-in defined name is taken as the template global option's name. It is case-sensitive.

The value of RefersTo property in built-in defined name is taken as the template global option's value. It is case-sensitive.

Refer to the below example code to specify the global settings in template:

C#

Workbook workbook = new Workbook();
workbook.Open("template.xlsx");

//Init template global settings
workbook.Names.Add("TemplateOptions.KeepLineSize", "true");
workbook.Names.Add("TemplateOptions.InsertMode", "EntireRowColumn");
//Global setting for PDF form fields
workbook.Names.Add("TemplateOptions.EmbedFontForFormFields", "true");

//Add data source

Documents for Excel, .NET Edition 359

Copyright © 2021 GrapeCity, Inc. All rights reserved.

workbook.AddDataSource("ds", ds);

//Invoke to process the template
workbook.ProcessTemplate();

workbook.Save("report.xlsx");

This template example records the E-commerce sales of electronic goods in different areas of a country. You can
also download the Excel template layout.

KeepLineSize

The below image shows the Excel report when 'TemplateOptions.KeepLineSize' is set to true.

InsertMode

The below image shows the Excel report when 'TemplateOptions.InsertMode' is set to EntireRowColumn. By doing
this, the row height and outline groups of the rows are retained when the template expands.

Documents for Excel, .NET Edition 360

Copyright © 2021 GrapeCity, Inc. All rights reserved.

EmbedFontForFormFields

This setting allows you to embed font files used by form fields in the PDF document generated by GcExcel.

When true, any arbitrary character is displayed correctly even if your machine or browser does not have corresponding
fonts installed. However, it may generate large sized PDF documents, especially when East Asian characters are used.
When false, the generated PDF document is of optimal size but messy code will be displayed if your machine or browser
does not have corresponding fonts installed.

The below image shows the PDF form generated by GcExcel when 'TemplateOptions.EmbedFontForFormFields' is set to
True. You can also download the Excel template layout used in below example.

Documents for Excel, .NET Edition 361

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Fixed Layout
When GcExcel processes a template layout, it inserts blank lines first and then sets the data and style to generate the final report.
In cases where a fixed layout is defined in the template, GcExcel provides two properties you can use to properly load the data in
this fixed layout area.

1. fillMode(FM) Property

The fillMode property can be set to 'overwrite' to set the data directly in template cells (without inserting blank rows). The
style of the template layout is retained and data is filled into it.

The below template example records the E-Commerce sales of electronic goods in different areas of a country and uses
'overwrite' fillMode property. You can also download the Excel template layout from here.

The data in data source contains 8 rows. After GcExcel processes the template layout, the Excel report will look like below:

Documents for Excel, .NET Edition 362

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Note: If fillMode property is not defined in the template layout, the default behavior is followed, which is to insert the
blank lines first.

2. fillRange(FR) Property

The fillRange property should be used when fillMode is set to overwrite and the data in data source exceeds the area of
fixed layout in template. So if the data overflows, the range defined by fillRange property is duplicated to fill additional
data.

For example: If the data in data source contains 20 rows and fillRange property defines the cell range as A1:A8. The range
will be duplicated to 8 more rows (total 16 rows) and then again to 8 more rows (total 24 rows), to fill the complete data
of 20 rows.

Note: When data in data source overflows and fillRange property is missing, range will not be duplicated to set data.
Instead, data will be filled beneath the range area in existing rows.

The below template example records the E-Commerce sales of electronic goods in different areas of a country. It uses
'overwrite' fillMode property along with fillRange property to accommodate the additional data. You can also download
the Excel template layout from here.

Documents for Excel, .NET Edition 363

Copyright © 2021 GrapeCity, Inc. All rights reserved.

The data in data source contains 26 rows. The fillRange property defines cell range for 12 rows and it is duplicated after
that twice to fill all the data. After GcExcel processes the template layout, the Excel report will look like below:

Documents for Excel, .NET Edition 364

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Default Values in Template Cells
While working with GcExcel templates, some cells are displayed as blank in the final Excel report when they have no data
or empty value in data source. To handle such cases, GcExcel provides ‘defaultValue’ (DV) property which sets the
specified default value in template cells containing data fields. The specified default value for cells containing no data or
empty value in data source can be viewed in the final Excel report.

Property Data Type Description Example

Documents for Excel, .NET Edition 365

Copyright © 2021 GrapeCity, Inc. All rights reserved.

DV
(defaultValue)

String or
Number

The default value to show when there is no data
in data source.

{{ds.BaseAmount(C=B7*C6,
defaultValue = 0)}}

{{ds.BaseAmount(C=C15*D14,
defaultValue = "-")}}

The below template is created to maintain E-commerce sales of electronic goods and their revenues in different areas of a
country. The 'ds.Revenue' field will display default value when no data is present in data source. You can also download
the Excel template layout used in below example.

When the template is processed, the default values are displayed in the final Excel report as shown below:

Note: The default value in template cells can not be displayed for function or expression fields.

PDF Form Builder
GcExcel Templates provide the ability to build PDF forms with various form fields using Excel as the designer. The form fields can be
defined using the proper syntax while creating template layouts. After the template is processed, the result can be exported to a
PDF document that includes the pre-defined form fields.

The "form" property can be used to define a PDF form field. The value of this property is in JSON format and a JSON string can be
used to describe all settings of the form field. For example:

{{ds1.Name(form={"type": "textbox", "name": "username", "value": "Input your name!","font":{"size":15, "color": "#ff0000", "bold":
true}, "required": true})}}
{{(form={"type": "listbox", "name": "cities", "value": ["Xi'An", "BeiJing"],"font":{"size":11, "color": "#ff00ff", "bold": true}, "required":

Documents for Excel, .NET Edition 366

Copyright © 2021 GrapeCity, Inc. All rights reserved.

true})}}

Note: The property name and enum values are case insensitive.

The following standard PDF form fields are supported:

Check box
Combo box
List box
Button
Radio button
Signature
Text box

Note: The form fields are visible only in PDF documents and not in Excel.

Bound PDF Form

Consider an example for generating a bound PDF form by using GcExcel Templates. In this case, an address book is generated in
PDF by defining textbox fields in template cells. The textbox fields are defined in a way that they relate to common details of an
address book, like:

Name : {{ds.Name(form={"type": "textbox", "name": "name","font":{"color": "#000000", "bold": true}})}}
Email: {{ds.Email(form={"type": "textbox", "name": "Email","font":{"color": "#EC881D"}})}}

These textbox fields are bound fields, whose data is populated from the data source and is displayed in the PDF form after template
processing. You can also download the Excel template layout from here.

After GcExcel processes the template and exports it to a PDF document, the PDF form will look like below:

Documents for Excel, .NET Edition 367

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Unbound PDF Form

Consider an example for generating an unbound PDF form by using GcExcel Templates. In this case, a wage and tax statement is
generated in PDF by defining textbox and checkbox fields in template cells, like:

Textbox field:

{{(form={"type": "textbox", "name": "tips","backgroundcolor": "#ffabab"})}}

Checkbox fields:

{{(form={"type": "checkbox", "name": "Retirement","border": {"color": "#ff0000"}})}}

{{(form={"type": "checkbox", "name": "Statutory","border": {"color": "#ff0000"}})}}

These fields are unbound fields, and their data should be filled directly in the PDF form after template processing. You can also
download the Excel template layout from here.

After GcExcel processes the template and exports it to a PDF document, the PDF form will look like below:

Documents for Excel, .NET Edition 368

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Various settings can be applied on form fields to enhance and customize their appearance. These are explained as below:

1. Common Settings

Name Value Type Example Description

type Enum string

Standard Form
Fields

checkbox
textbox
listbox
combobox
radiobutton
pushbutton
signature

Custom Form

{"type": "listbox"} Indicates the type
of form field.

(Mandatory field)

Documents for Excel, .NET Edition 369

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Fields

text
date
time
tel
email
url
password
month
week
number
search

alternateName String {"alternateName": "The alt name"} Displays
text which is
helpful for a user
while filling in the
form field.
Tooltips appear
when the pointer
hovers briefly
over the form
field.

backgroundcolor String {"backgroundcolor": "#ffff00"}
{"backgroundcolor": "rgb(255, 178, 0)"}
{"backgroundcolor": "rgba(188, 100, 0, 255)"}

Indicates
background color
of the form field.

border width Yes {"border":{"width": 120}}
Indicates width,
color and style
settings of the
border for the
form field.

color String {"border":{"color": "#ffff00"}
{"border": {"color": "rgb(255, 178, 0)"}}
{"border": {"color": "rgba(188, 100, 0, 255)"}}

style Enum string:
none
solid
dashed
beveled
inset
underline
unknown

{"border": {"style": "dashed"}}

font size Yes {"font": {"size": 18}}
Indicates various
font settings
which can be
used in the form
field.

color String {"font": {"color": "#ffff00"}}
{"font": {"color": "rgb(255, 178, 0)"}}
{"font": {"color": "rgba(188, 100, 0, 255)"}}

name String {"font": {"name": "sans-serif"}}

bold Boolean {"font": {"bold>": true}}

italic Boolean {"font": {"italic": true}}

locked Boolean {"locked": true} Indicates whether

Documents for Excel, .NET Edition 370

Copyright © 2021 GrapeCity, Inc. All rights reserved.

the user can
change the
properties of
field or not.

name String {"name": "The field name"} Indicates the
unique name of
field.

readOnly Boolean {"readOnly": true} Indicates whether
the user can
change the value
of field or not

required Boolean {"required": true} Indicates whether
the field must
have a value.

printed Boolean {"printed":false} Indicates whether
to print the field
when page is
printed.

hidden Boolean {"hidden":true} Indicates whether
to display the
field or not.

mouseUp JsonObject {"mouseUp":{"script":"fBox1 =
this.getField(\"checkbox\")
;\r\nfBox1.display =
display.hidden",
"submit":"http://localhost:80//myscript#FDF"
,"reset":{"fieldNames":
["checkbox", "textbox"]}}}

Indicates the
actions to be
performed in
sequence when
the mouse
button is
released in the
active area of the
field.

mouseDown JsonObject {"mouseDown":{"script":"fBox1
= this.getField(\"checkbox\")
;\r\nfBox1.display =
display.hidden",
"submit":"http://localhost:80//myscript#FDF"
,"reset":{"fieldNames":
["checkbox","textbox"]}}}

Indicates the
actions to be
performed in
sequence when
the mouse
button is pressed
in the active area
of the field.

mouseEnter JsonObject {"mouseEnter":{"script":"fBox1
= this.getField(\"checkbox\")
;\r\nfBox1.display =
display.hidden",
"submit":"http://localhost:80//myscript#FDF"
,"reset":{"fieldNames":
["checkbox","textbox"]}}}

Indicates the
actions to be
performed in
sequence when
the mouse
button enters the
field's active area.

mouseExit JsonObject {"mouseExit":{"script":"fBox1
= this.getField(\"checkbox\")

Indicates the
actions to be

Documents for Excel, .NET Edition 371

Copyright © 2021 GrapeCity, Inc. All rights reserved.

;\r\nfBox1.display =
display.hidden",
"submit":"http://localhost:80//myscript#FDF"
,"reset":{"fieldNames":
["checkbox","textbox"]}}}

performed in
sequence when
the mouse
button exitsthe
field's active area.

onFocus JsonObject {"onFocus":{"script":"fBox1 =
this.getField(\"checkbox\")
;\r\nfBox1.display =
display.hidden",
"submit":"http://localhost:80//myscript#FDF"
,"reset":{"fieldNames":
["checkbox","textbox"]}}}

Indicates the
actions to be
performed in
sequence when
the annotation
receives the input
focus.

onBlur JsonObject {"onBlur":{"script":"fBox1
= this.getField(\"checkbox\")
;\r\nfBox1.display =
display.hidden",
"submit":"http://localhost:80//myscript#FDF"
,"reset":{"fieldNames":
["checkbox","textbox"]}}}

Indicates the
actions to be
performed in
sequence when
the annotation
loses the input
focus.

format String {"format":"event.value = (event.value * 100)
+ \" % \";"}

Indicates a
JavaScript action
to be performed
before the field is
formatted to
display its current
value. This action
can modify the
field’s value
before
formatting.

validate String {"validate":"if (event.value < 0
|| event.value > 100)
{\r\n" +"app.beep(0);\r\n"
+"app.alert(\"Invalid value for field \"
+event.target.name);\r\n" +
"event.rc = false;\r\n" +"}"}

Indicates a
JavaScript action
to be performed
when the field’s
value is changed.
This action can
check the new
value for validity.

calculate String {"calculate":"var oil =
this.getField(\"Oil\");\r\n"+
"var filter = this.getField(\"Filter\")
;\r\n"+"event.value
(oil.value + filter.value) * 1.0825;"}

Indicates a
JavaScript action
to be performed
to recalculate the
value of this field
when that of
another field
changes.

keystroke String {"keystroke":"if (!event.willCommit) Indicates a

Documents for Excel, .NET Edition 372

Copyright © 2021 GrapeCity, Inc. All rights reserved.

{\r\n"+"var f =this.getField
(\"myPictures\");\r\n"+"var i
=this.getIcon(event.change)
;\r\n"+"f.buttonSetIcon(i);\r\n"+"};"}

JavaScript action
to be
performedwhen
the user types a
keystroke into a
text field or
combo box or
modifies the
selection in a
scrollable list box.
This action can
check the
keystroke for
validity and reject
or modify it.

autofocus Boolean {"type": "password" , "autofocus": true} Indicates whether
a date field
should
automatically get
focus when the
page loads.

disabled Boolean {"type": "password" , "disabled": true} Indicates whether
a field is disabled
or not.

autocomplete Enum String {"type": "date" , "autocomplete": "bday"} Lets web
developers
specify if any user
needs to provide
assistance for
automated filling
of form field
values, as well as
guidance to the
browser
about what type
of information
is expected in the
field.

The behavior of
this property
depends on the
browser
implementation.

on
off
name
honorific-
prefix
given-name
additional-
name
family-name
honorific-
suffix
nickname
email
username
new-
password
current-
password
one-time-
code
organization-
title
organization

cc-number
cc-exp
cc-exp-
month
cc-exp-year
cc-csc
cc-type
transaction-
currency
transaction-
amount
bday-day
language
bday
bday-day
bday-
month
bday-year
sex
tel
tel-country-
code
tel-national

Documents for Excel, .NET Edition 373

Copyright © 2021 GrapeCity, Inc. All rights reserved.

street-
address
address-line1
address-line2
address-line3
address-
level4
country
country-
name
postal-code
cc-name
cc-given-
name
cc-
additional-
name
cc-family-
name

tel-area-
code
tel-local
tel-local-
prefix
tel-local-
suffix
tel-
extension
impp
url
photo

2. JsonObject Settings

Name Value
Type Example Description

script String {"script":"fBox1 =
this.getField(\"checkbox\");\r\nfBox1.display =
display.hidden"}

Indicates an action which causes a script to
be compiled and executed by the JavaScript
interpreter.

submit String {"submit":"http://localhost:80//myscript#FDF"} Indicates an action to transmit the names
and values of selected interactive form fields
to a specified uniform resource locator
(URL), presumably the address of a Web
server that will process them and send back
a response.

reset fieldNames Yes {"fieldNames": ["checkbox", "textbox"]} Indicates the list of names of fields that
should be processed (or excluded from
processing)by this action. If empty then all
fields will be processed.

exclude Boolean {"exclude":true} Indicates whether to exclude the fields
specified in fieldNames from processing (by
default, this property is false and the
specified fields are included).

Note: Snippets of JavaScript code needs to be escaped.

3. Checkbox Form Field Settings

Documents for Excel, .NET Edition 374

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Name Value Type Example Description

checkStyle Enum string:

check
circle
cross
diamond
square
Star

{"checkStyle":
"circle"}

Indicates the style of check mark.

value Boolean {"value": true} Indicates the value of Checkbox.

(If the value is missing, GcExcel automatically tries to convert the cell's value
to Boolean, and then, set it to the property after processing the template.)

defaultValue Boolean {"defaultValue":
false}

Indicates the default value of Checkbox.

4. Textbox Form Field Settings

Name Value
Type Example Description

value String {"value": "Hunter"} Indicates the value of Textbox.

defaultValue String {"defaultValue": "Input
your name!"}

Indicates the default value of Textbox.

combo Boolean {"combo":true} Indicates whether the new value is committed as soon as a selection is
made with the pointing device.

password Boolean {"password":true} Indicates whether the field is intended for entering a secure password
that should not be visible on the screen.

spellcheck Boolean {"spellcheck":false} Indicates whether the text entered in the field is spell-checked.

scrollable Boolean {"scrollable":false} Indicates whether the field is scrollable to accommodate more text than
it fits within its annotation rectangle.

maxlength Integer {"maxlength":10} Indicates the maximum length of the field’s text, in characters.

multiline Boolean {"multiline":true} Indicates whether the field can contain multiple lines of text.

justification Enum
string:

left
center
right

{"justification":
"center"}

Indicates the justification to be used while displaying the field’s text.

Note: GcExcel also supports custom form fields like date, email, password, month etc. which are inherited from Textbox
form field. To know more about these, refer Custom Form Fields.

Documents for Excel, .NET Edition 375

Copyright © 2021 GrapeCity, Inc. All rights reserved.

5. Listbox Form Field Settings

Name Value
Type Example Description

value String
Array

{"value": ["US", "UK"]} Indicates the value of Listbox.

defaultValue String
Array

{"defaultValue": ["US",
"UK"]}

Indicates the default value of Listbox.

commitOnSelChange Boolean {"commitOnSelChange":
true}

Indicates whether the new value is committed as soon as a
selection is made with the pointing device.

selectedIndex Integer {"selectedIndex": 0} Indicates the indexes of selected item.

sort Boolean {"sort": true} Indicates whether the field’s option items should be sorted
alphabetically.

spellCheck Boolean {"spellCheck": true} Indicates whether the text entered in the field is spell-checked.

selectedIndexes Integer
Array

{"selectedIndexes": [0, 2,
5]}

Indicates the indexes of selected items.

multiSelect Boolean {"multiSelect": true} Indicates whether more than one of the field’s option items
may be selected simultaneously.

exportValue String {"exportValue":
"TheResult"}

Indicates the export value of Listbox field.

6. Combobox Form Field Settings

Name Value
Type Example Description

value String
Array

{"value": ["US", "UK"]} Indicates the value of Combobox.

defaultValue String
Array

{"defaultValue": ["US",
"UK"]}

Indicates the default value of Combobox.

commitOnSelChange Boolean {"commitOnSelChange":
true}

Indicates whether the new value is committed as soon as a
selection is made with the pointing device.

selectedIndex Integer {"selectedIndex": 0} Indicates the indexes of selected item.

sort Boolean {"sort": true} Indicates whether the field’s option items should be sorted
alphabetically.

spellCheck Boolean {"spellCheck": true} Indicates whether the text entered in the field is spell-checked.

editable Boolean {"editable": true} Indicates whether the Combobox includes an editable text box
as well as a drop-down list.

Documents for Excel, .NET Edition 376

Copyright © 2021 GrapeCity, Inc. All rights reserved.

7. Radiobutton Form Field Settings

Name Value Type Example Description

checkStyle Enum string:

check
circle
cross
diamond
square
Star

{"checkStyle": "circle"} Indicates the style of check mark.

groupName String {"groupName": "Teams"} Indicates the name of radio button group.

Radio buttons with the same group name are
added in the same group.

(If the value is missing, GcExcel automatically
adds radio buttons expanded from the same
template cell to the same group after
processing the template)

radiosInUnison Boolean {"radiosInUnison": true} Indicates whether a group of radio buttons
within a radio button field that use the same
value for the on state will turn on and off in
unison.
If one is checked, they are all checked. If clear,
the buttons are mutually exclusive (the same
behavior as HTML radio buttons).

checkedChoice String {"checkedChoice": "Team5"} Indicates the value of checked option.

defaultCheckedChoice String {"defaultCheckedChoice": "Team1"} Indicates the value of checked option when
the user first opens the form.

8. Pushbutton Form Field Settings

Name Value Type Example Description

highlighting Enum string:

none
invert
outline
push

{"highlighting":
"outline"}

Indicates the annotation’s highlighting
mode.

caption String {"caption": "Push"} Indicates the button's caption.

image Base64 String {"image": "The base64
image data."}

Indicates the button’s image.

captionImageRelation Enum string:

captionOnly

{"captionImageRelation":
"captionBelowIcon"}

Indicates the positioning of button's caption
relative to image.

Documents for Excel, .NET Edition 377

Copyright © 2021 GrapeCity, Inc. All rights reserved.

imageOnly
captionBelowIcon
captionAboveIcon
captionAtRight
captionAtLeft
captionOverlaid

downCaption String {"downCaption": "Push
Down"}

Indicates the button's caption when user
presses the button.

downImage Base64 String {"downImage": "The
base64 image data."}

Indicates the button’s image when user
presses the button.

rolloverCaption String {"rolloverCaption":
"Rollover"}

Indicates the button's caption when the user
rolls the cursor into its active area without
pressing the mouse button.

rolloverImage Base64 String {"rolloverImage": "The
base64 image data."}

Indicates the button’s image when the user
rolls the cursor into its active area without
pressing the mouse button.

imageScale mode Yes {"imageScale": {"mode":
"bigger"}}

Indicates the scaling mode.

proportional Boolean {"imageScale":
{"proportional": true}}

Indicates whether an image should be
scaled proportionally.

x Float {"imageScale":
{"proportional": true, "x":
0.6}}

Indicates the position of an image.

The two numbers between 0.0 and 1.0
indicates the fraction of leftover space to
allocate at the left and bottom of an image.
A value of (0.0, 0.0) positions the image at
the bottom-left corner of the button
rectangle. A value of (0.5, 0.5) centers it
within the rectangle.

This value is used only if the image is scaled
proportionally.

y Float {"imageScale":
{"proportional": true, "y":
0.8}}

ignoreBorder Boolean {"imageScale":
{"ignoreBorder": true}}

Indicates whether a button's appearance
should be scaled to fit fully within the
bounds of the annotation without taking
into consideration the line width of the
border.

9. Signature Form Field Settings

Name Value Type Example Description

lockType Enum string:

all

{"lockType":
"specifiedOnly"}

Indicates the type of locked fields.

Documents for Excel, .NET Edition 378

Copyright © 2021 GrapeCity, Inc. All rights reserved.

specifiedOnly
allButSpecified

fieldNames String Array {"fieldNames":
["signerName", "time"]}

Indicates the list of field names which should be included or
excluded from processing depending on lockType property.

LockedFields Boolean {"LockedFields": true} Indicates whether to lock the fields when SignatureFormField
is signed or not.

Note: GcExcel Template generates only digital signature fields in PDF documents. If you want to add signatures on
signature fields, you need to use GcPDF or PDFBox to process.

Apart from the above mentioned standard PDF form fields, GcExcel also supports custom form input types to generate PDF forms.
Refer to Custom Form Input Types for more information.

Custom Form Input Types
Along with the support of Standard PDF form fields in GcExcel Templates, it also supports custom form input types in PDF
forms which allow you to fill PDF forms easily and conveniently. It supports adding HTML5 custom input types to PDF
documents. These custom form input types are not supported by standard PDF specification and hence these can only be
opened, viewed and filled in GcDocs Pdf Viewer (not in Acrobat or other PDF viewers). These custom form input types are
inherited from "textbox" field and are mentioned below:

text
date
time
tel
email
url
password
month
week
number
search

You can also define validation settings for these custom form input types which provide users with feedback on their form
submission before sending it to server. For example, any custom form input type is a required field, password needs to be
of minimum 8 characters, email needs to follow a certain pattern etc. If a certain validation is not followed and a validation
message is set, the form will display the defined validation message on submission. These validations can be defined in
custom form input types by using below validation types:

validationmessage
validateoninput
minlength
maxlength
required
pattern
min
max

Documents for Excel, .NET Edition 379

Copyright © 2021 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/documents-api-pdf/docs/online/grapecitydocumentspdfviewer.html

A few examples of custom form input types with validations are given below:

{{(form={"type":"url", "autocomplete":"url", "validateoninput": true, "backgroundcolor": "rgb(191, 207, 255)",
"border": {"color": "#000000"}})}}
{{(form={"type":"email", "autocomplete":"email", "validateoninput": true, "backgroundcolor": "rgb(191, 207, 255)",
"border": {"color": "#000000"}})}}
{{(form={"type":"password", "autocomplete":"off", "validateoninput": true, "placeholder": "4 to 8 characters",
"pattern": "^(?=.*\\d).{4,8}$", "validationmessage": "The password must be between 4 and 8 characters.",
"backgroundcolor": "rgb(191, 207, 255)", "border": {"color": "#000000"}})}}

These custom form input types are inherited from 'textbox' field, hence they inherit all the 'textbox' field settings which
can be referred here. Also, there are some Common Settings which can be applied to all the custom form input types. The
settings specific to each field are explained below:

Tel or Password or URL Custom Form Input Type Settings

Property Value Example Description

pattern String {"type": "tel" , "pattern":"[0-9]{3}-[0-9]{2}-
[0-9]{3}"}

Pattern the value must match to be valid

placeholder String {"type": "password" , "placeholder": "4 to 8
characters"}

Sets or returns the value of the placeholder attribute
of an tel field

maxlength Integer {"type": "password" , "minlength": 4,
"maxlength": 8}

Maximum length (number of characters) of value

minlength Integer {"type": "password" , "minlength": 4,
"maxlength": 8}

Minimum length (number of characters) of value

Email Custom Form Input Type Settings

Property Value Example Description

multiple Boolean {"type": "email" , "multiple": true} Sets or returns whether a user is allowed
to enter more than one email address in
the email field.

pattern String {"type": "email" , "pattern": "\\S+@\\S+\\.\\S+"} Sets or returns the value of the pattern
attribute of an email field.

placeholder String {"type": "email" , "placeholder": "example@xxx.com"} Sets or returns the value of the
placeholder attribute of an email field.

Text Custom Form Input Type Settings

Property Value Example Description

maxlength Integer {"type": "text" , "minlength": 4,
"maxlength": 8}

Maximum length (number of characters) of value

minlength Integer {"type": "text" , "minlength": 4,
"maxlength": 8}

Minimum length (number of characters) of value

Documents for Excel, .NET Edition 380

Copyright © 2021 GrapeCity, Inc. All rights reserved.

pattern String {"type": "text" , "pattern":
"\\S+@\\S+\\.\\S+"}

Sets or returns the value of the pattern attribute of
field

placeholder String {"type": "text" , "placeholder": "Input your
name!"}

Sets or returns the value of the placeholder
attribute of field

spellcheck Boolean {"type": "text" , "spellcheck": true} Whether the element may be checked for spelling
errors

Search Custom Form Input Type Settings

Property Value Example Description

maxlength Integer {"type": "search" , "minlength": 4,
"maxlength": 8}

Maximum length (number of characters) of value

minlength Integer {"type": "search" , "minlength": 4,
"maxlength": 8}

Minimum length (number of characters) of value

placeholder String {"type": "search" , "placeholder":
"Search..."}

Sets or returns the value of the placeholder
attribute of field

spellchecker Boolean {"type": "search" , "spellcheck": true} Whether the element may be checked for spelling
errors

Validation Settings

The following table explains the validation settings provided for custom custom form input types.

Property Value Description

validateonmessage String Localized validation message

validateoninput Boolean Indicates whether validation should be performed immediately during user input

maxlength Number Maximum number of characters to be accepted

minlength Number Minimum number of characters which can be considered valid

required Boolean Indicates whether the form filling is required or not

pattern String Regular expression that must be matched by the entered value to pass constraint
validation

max Number Maximum value to accept for this input

min Number Minimum value to accept for this input

Settings Supported by Custom Form Input Types

The following table provides consolidated information about settings supported by different custom form input types.

Attribute Input Field Type Description

autocomplete All Input type.

Documents for Excel, .NET Edition 381

Copyright © 2021 GrapeCity, Inc. All rights reserved.

autofocus All Automatically focus the form control when the page is loaded.

defaultvalue All The default value.

disabled All Whether the form control is disabled.

displayname All Text label for the input control. Applicable only if the field appears in
the Form Filler dialog box.

min number and date Minimum value to accept for the input.

max number and date Maximum value to accept for the input.

maxlength password, search, tel,
text and url

Maximum length (number of characters) of value.

minlength password, search, tel,
text and url

Minimum length (number of characters) of value

multiline text Set this property to true if you want to use the textarea as a user input
element.

multiple email Boolean. Whether to allow multiple values or not.

pattern password, text and tel Pattern value must match to be valid.

placeholder password, search, tel,
text and url

Text that appears in the form control when it has no value set.

readonly All Boolean. The value is not editable.

required All Boolean. A value is required or must be check for the form to be
submittable.

spellcheck search and text Whether the element may be checked for spelling errors.

type All Type of form control.

validateonmessage All Localized validation message.

validateoninput All Indicates whether validation should be performed immediately during
user input.

The following Excel template shows various input types and settings supported with GcExcel templates. As can be
observed, these fields are very common and makes PDF form filling very convenient. The 'date' and 'time' fields will
provide date picker and time picker dropdown UI in the generated PDF form when viewed in GcDocs Pdf Viewer. The 'tel
with pattern' field defines a pattern which will be matched with the user input while filling the form. The 'password with
minlength' and 'password with maxlength' defines the character limit which can be used while setting a password. The
validations applied to custom form input types make the form filling more meaningful and useful.

You can also download the Excel template layout from here.

Documents for Excel, .NET Edition 382

Copyright © 2021 GrapeCity, Inc. All rights reserved.

After GcExcel processes the above template and exports it to a PDF document, the PDF form will look like below in
GcDocs PDF Viewer:

Documents for Excel, .NET Edition 383

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Note: The PDF form with custom input fields can only be filled in GcDocs PDF Viewer. You can also customize the
custom form input type settings by using GcDocs PDF Viewer's Form Filler feature.

Charts
Excel charts can be added in Template layout which are visible in the Excel report. It is very useful as charts are often used in Excel
reports to display graphical data. Along with that, it provides an advantage that the final chart will always be updated with the
latest data, when the template is processed.

The Excel charts are bound with template cells by specifying the series name, series value and axis labels in the template layout.
While processing the template layout, the chart is bound to the data, and the Excel report is generated with the chart displaying
final data. A chart can be placed in a worksheet with its data or in another worksheet too.

Documents for Excel, .NET Edition 384

Copyright © 2021 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/documents-api-pdf/docs/online/form-filler.html

Follow the steps mentioned below to add chart in a template layout and configure its data to template cells:

Here we are adding a chart to a 'Quarterly Sales Data' report which displays the sales of electronic goods in different areas of
North and South America. The chart in the template configures the name of an electronic item as series name, revenue as series
value and the city in which sales have been done as axis labels to display the sales data in a graphical manner.

You can also download the Excel template layout used in below example.

1. Insert an empty chart in the Template layout in Excel.

2. Right click on the chart and choose 'Select Data' from context menu

Documents for Excel, .NET Edition 385

Copyright © 2021 GrapeCity, Inc. All rights reserved.

3. In the 'Select Data Source' dialog box, click 'Add' button to add a series for the chart.

4. In the 'Edit Series' dialog box, click in 'Series Name' and then select 'ds.Salesman' field of the template layout as salesman
field is being used as series for the chart.

Documents for Excel, .NET Edition 386

Copyright © 2021 GrapeCity, Inc. All rights reserved.

5. Next, click in 'Series Values' and then select 'ds.Sales' field of the template layout as sales field is being used as the value
for the series of the chart.

6. Click on the 'Edit' button highlighted in the below screenshot.

Documents for Excel, .NET Edition 387

Copyright © 2021 GrapeCity, Inc. All rights reserved.

7. In the 'Axis Labels' dialog box, click in 'Axis Label Range' and then select 'ds.Product' field of the template layout as
products field is being used as axis label of the chart.

8. Click Ok to submit the data configuration.

Documents for Excel, .NET Edition 388

Copyright © 2021 GrapeCity, Inc. All rights reserved.

After processing the template layout, the Excel report will look like below.

Tables

Documents for Excel, .NET Edition 389

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Tables are essential to depict large amounts of data in an organized way. GcExcel supports using Excel tables in template
layouts where various operations can also be performed on it like filtering, sorting etc.

This template example lists sales information for different areas grouped as a list. The template cells are defined within the
table layout.

The below image displays a template layout where a table is used and template cells are defined inside the table. You can
also download the Excel template layout from here.

After GcExcel processes the template layout, the Excel report will look like below:

Documents for Excel, .NET Edition 390

Copyright © 2021 GrapeCity, Inc. All rights reserved.

An Excel table can be incorporated in a template layout in two ways:

1. Template cells inside an Excel table: You can insert a table in Excel's template layout and define template cells
inside it, as shown in above screenshot. The table is resized according to the expanded data after processing the
template in GcExcel.

2. Excel table inside a template cell’s range: You can define a template cell with Range property and insert a table
anywhere within that range. The table is copied according to the expansion data after processing the template in
GcExcel.

Note: Table formulas are also supported in template cells.

Limitations

In GcExcel Templates, the default group type is "Merge", which is not supported in case of tables. Hence, you
should explicitly set the group type to any other value except "Merge".
Excel table inside a template cell’s range: The complete range of table should be included in the template cell’s
Range property. For example, if a table occurs in the range C5:D8, the template cell should have the "Range(R)"
property, for example: {{ds.Area(R=C5:D8)}}, to include table inside cell range C5:D8.
However, for sheet name template, any table in the current sheet is included by default. So, it doesn't need to set
"Range" property.
Template cells inside an Excel table: If sheet name template is also used along with table, there might be layout
issues while expanding the template and the table might be moved to an incorrect location. Hence, you
should convert table to cell range before processing.

Documents for Excel, .NET Edition 391

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Sparklines
GcExcel supports adding sparklines in template layout, which are visible in the Excel report generated after processing the
template.

Follow the steps mentioned below to add a sparkline in template layout and configure its data to template cells:

You can also download the Excel template layout used in below example.

1. Insert a sparkline in Excel's template layout by choosing Menu | Insert | Sparklines.
2. In the "Create Sparklines" dialog box, choose a template cell as:

Data Range - Data to be displayed by sparkline
Location Range - Location where sparkline will be displayed

After GcExcel processes the template layout, the Excel report will look like below:

Note: In Excel report, the sparkline whose data range and location range are in the same column is displayed as
a 'vertical' sparkline, otherwise, as 'horizontal' sparkline.

Documents for Excel, .NET Edition 392

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Data Source Binding
Once the template layout is prepared in Excel including bound fields, expressions, formula and sheet name fields, these
fields need to be bound to a data source. You can add a data source using the AddDataSource method and bind the
data with template using the ProcessTemplate method. This will populate the data from datasource in the template
fields to generate the Excel report.

Also, you can use multiple data sources or multiple data tables within a data source and populate data through them. The
syntax requires you to define the object of the data source followed by the data field. For example, the below template
layout merges data from two data sources, the employee information from one data table and Department information
from another table.

GcExcel supports the below data sources while using templates:

DataTable

A single table which has collection of rows and columns from any type of database

Template syntax

[Alias of data source].[Column name]

For example:

{{ds.ID}}

{{ds.Name}}

Bind DataTable datasource

C#

var datasource = new System.Data.DataTable();
 datasource.Columns.Add(new DataColumn("ID", typeof(Int32)));
 datasource.Columns.Add(new DataColumn("Name", typeof(string)));
 datasource.Columns.Add(new DataColumn("Score", typeof(Int32)));
 datasource.Columns.Add(new DataColumn("Team", typeof(string)));

 ...//Init data

Documents for Excel, .NET Edition 393

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 //Add data source
 workbook.AddDataSource("ds", datasource);

DataSet

A collection of one or more DataTables

Template syntax

[Alias of data source].[Table name].[Column name]

For example:

{{ds.Table1.ID}}

{{ds.Table2.Team}}

Bind DataSet datasource

C#

var dTable1 = new System.Data.DataTable();
var dTable2 = new System.Data.DataTable();

 ...//Init data

 var datasource = new System.Data.DataSet();
 datasource.Tables.Add(team1);
 datasource.Tables.Add(team2);

 //Add data source
 workbook.AddDataSource("ds", datasource);

Custom Object

A user-defined object from user code or serialized object of JSON String/File/XML, etc. GcExcel Template supports any
data source that can be serialized as a custom object.

Template syntax

[Alias of data source].[Field name]

or

[Alias of data source].[Property name]

Documents for Excel, .NET Edition 394

Copyright © 2021 GrapeCity, Inc. All rights reserved.

For example:

{{ds.Records.Area}}

{{{ds.Records.Product}}

Bind Custom Object datasource

C#

var datasource = new SalesData
 {
 Records = new List<SalesRecord>()
 };

 var record1 = new SalesRecord
 {
 Area = "NorthChina",
 Salesman = "Hellen",
 Product = "Apple",
 ProductType = "Fruit",
 Sales = 120
 };
 datasource.Records.Add(record1);

 var record2 = new SalesRecord
 {
 Area = "NorthChina",
 Salesman = "Hellen",
 Product = "Banana",
 ProductType = "Fruit",
 Sales = 143
 };
 datasource.Records.Add(record2);

 ...//Init data

 //Add data source
 workbook.AddDataSource("ds", datasource);

Variable

A user-defined variable in code

Template Syntax

Documents for Excel, .NET Edition 395

Copyright © 2021 GrapeCity, Inc. All rights reserved.

[Alias of data source]

For example:

{{cName}}

{{count}}

{{owner}}

Bind Variable datasource

C#

var className = "Class 3";
 var count = 500;

 //Add data source
 workbook.AddDataSource("cName", datasource);
 workbook.AddDataSource("count", count);
 workbook.AddDataSource("owner", "Hunter Liu");

Array or List

A user-defined array or list in code

Template syntax

1. Array or List of base type variable(string, int , double, etc.)

[Alias of data source]

2. Array or List of custom object

[Alias of data source].[Field name]

or

[Alias of data source].[Property name]

For example:

{{p.Name}}

{{p.Age}}

{{countries}}

{{numbers}}

Bind Array or List datasource

C#

Documents for Excel, .NET Edition 396

Copyright © 2021 GrapeCity, Inc. All rights reserved.

int[] numbers = new int[] { 10, 12, 8, 15};
 List<string> countries = new List<string>() { "USA", "Japan", "UK", "China" };

 List<Person> peoples = new List<Person>();

 Person p1 = new Person();
 p1.Name = "Helen";
 p1.Age = 12;
 peoples.Add(p1);

 Person p2 = new Person();
 p2.Name = "Jack";
 p2.Age = 23;
 peoples.Add(p2);

 Person p3 = new Person();
 p3.Name = "Fancy";
 p3.Age = 25;
 peoples.Add(p3);

 workbook.AddDataSource("p", peoples);
 workbook.AddDataSource("countries", countries);
 workbook.AddDataSource("numbers", numbers);

Create Excel Report using Template
This walkthrough considers the use case to create a Marketing Report of a company which is launching a new series of
smartphones. Hence, an Excel report for the planned marketing activities needs to be created. The report details out the planned
events for the launch, its budget and expenses. The datasource used for binding the data, in this case, is DataTable. The template
layout is created in different Excel tabs to generate multiple reports.

The below steps describe how to create an Excel report using template. You can also download the Excel template layout here.

1. Create template layouts in different Excel worksheets of a workbook. Define the template layout of Marketing report
using different types of fields:

Static Fields: Define the static fields in template layout, that is, the fields whose values will remain constant in the
final report. For example, the header fields or template header like Marketing Report, SmartPhone, Event etc.
Bound Fields: Specify the datasource bound fields in mustache braces {{ }}. For DataTable datasource, define the
bound fields as {{ds.FieldName}} where ds is the alias of the datasource, specified in code using AddDataSource
method.
Expression Fields: Specify the functions in fields whose value will be calculated using formulas.
Sheet Name: Create multiple template layouts in different Excel tabs, namely, Marketing Report, Smartphone
expenses and Launch events. Specify a data bound FieldName for last sheet, {{ds.Country}}, which will generate
multiple reports based on the values of 'Country' field in the data source.

Template Layout: Marketing Report

The below layout uses the Group property (G=Merge), which will group the smartphones against the corresponding
records by displaying it once per group. The merge value merges the cells of each group.

Documents for Excel, .NET Edition 397

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Template Layout: SmartPhone Expenses

The below layout uses two template properties, Cell expansion (E=H) and Cell context (C=A3)

The cell expansion property will expand the smartphone field horizontally.
The cell context property will make sure that the expense field expands horizontally depending upon the
smartphone field.

Template Layout: Launch Events

The below layout uses four template properties, Range (R=A3:B5), Sort (S=None), Cell expansion (E=H) and Page break
(PageBreak=True)

The Range property acts as the fallback context for the fields in specified range, which means, that the fields which
have no default or explicit context will use this current field as their context.
The Sort property will not sort the events based on its 'none' value
The event field will expand horizontally based on the cell expansion property
The Page Break property will add a vertical and a horizontal page break

Documents for Excel, .NET Edition 398

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Template Layout: {{ds.Country}}

2. Load the template in GcExcel.
C#

Console.WriteLine("Generating Marketing Report using GcExcel Templates");
// Initialize Workbook
var workbook = new Workbook();
// Load BudgetPlan_DataTable.xlsx Template in workbook from Resource
var templateFile = "../../../Resources/BudgetPlan_DataTable.xlsx";
workbook.Open(templateFile);

3. Configure DataSource and add DataColumns and data to the DataTable.
C#

// We can have mutiple types of DataSources like Custom Object/ DataSet/ DataTable/
Json/ Variable.
// Here dataSource is a DataTable
var dataSource = new DataTable();

// Adding DataColumns in DataTable according to the Template fields
dataSource.Columns.Add(new DataColumn("SmartPhone", typeof(string)));
dataSource.Columns.Add(new DataColumn("Event", typeof(string)));
dataSource.Columns.Add(new DataColumn("Budget", typeof(Int32)));
dataSource.Columns.Add(new DataColumn("Expense", typeof(Int32)));
dataSource.Columns.Add(new DataColumn("City", typeof(string)));
dataSource.Columns.Add(new DataColumn("Country", typeof(string)));

Documents for Excel, .NET Edition 399

Copyright © 2021 GrapeCity, Inc. All rights reserved.

// Adding Data in DataTable
dataSource.Rows.Add("Apple iPhone 11", "Phone Launch", 1000, 950, "Seattle", "USA");
dataSource.Rows.Add("Apple iPhone 11", "CEO Meet", 2000, 1800, "New York", "USA");
dataSource.Rows.Add("Samsung Galaxy S10", "CEO Meet", 1600, 1550, "Paris", "France");
dataSource.Rows.Add("Apple iPhone XR", "Phone Launch", 1800, 1650, "Cape Town", "South
Africa");
dataSource.Rows.Add("Samsung Galaxy S9", "Phone Launch", 1500, 1300, "Paris", "France");
dataSource.Rows.Add("Apple iPhone XR", "CEO Meet", 1600, 1500, "New Jersey", "USA");
dataSource.Rows.Add("Samsung Galaxy S9", "CEO Meet", 1200, 1150, "Seattle", "USA");
dataSource.Rows.Add("Samsung Galaxy S10", "Phone Launch", 1100, 1070, "Durban", "South
Africa");

4. Add DataSource in GcExcel, using the AddDataSource method.
C#

// Add DataSource
// Here "ds" is the name of dataSource which is used in templates to define fields like
{{ds.SmartPhone}}
workbook.AddDataSource("ds", dataSource);

5. Execute the template using ProcessTemplate method.
C#

// Invoke to process the template
workbook.ProcessTemplate();

6. Save the final report.
C#

// Save to an excel file
Console.WriteLine("BudgetPlan_DataTable.xlsx Template is now bound to DataTable and
generated MarketingReport_DataTable.xlsx file");
workbook.Save("MarketingReport_DataTable.xlsx");

The output of the Marketing Report is shown as below.

Excel Report: Marketing Report

Documents for Excel, .NET Edition 400

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Excel Report: Smartphone Expenses

Excel Report: Launch Events

Excel Report: Countries (Multiple reports are created)

Documents for Excel, .NET Edition 401

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Documents for Excel, .NET Edition 402

Copyright © 2021 GrapeCity, Inc. All rights reserved.

File Operations
GcExcel .NET allows users to export (save) data from a spreadsheet into several different file types (.xlsx, .csv, .pdf and .json
files) and import data (open) files from several different file types (.xlsx, .csv and .json files) into GcExcel .NET. Using code,
you can save the whole component, a particular sheet, or data from a particular range of cells to several different file types
or streams.

Refer to the following procedures to handle file operations for a range of file types in GcExcel.NET:

Import and Export .xlsx Document
Export to PDF
Export to a HTML File
Import and Export CSV File
Import and Export CSV File with Delimiters
Import and Export JSON Stream
Import and Export Macros
Import and Export OLE Objects
Convert to Image

Note: While exporting a worksheet to PDF, HTML or image file formats, you can set the HorizontalAlignment
enumeration to CenterContinuous to center align the text across multiple cells. However, the horizontal alignment
should be set before merging the cells. Otherwise, the cells may be drawn incorrectly in exported file formats.

Import and Export .xlsx Document
This section summarizes how GcExcel .NET handles the spreadsheet documents(.xlsx files).

When you create a workbook using GcExcel .NET and save it, you automatically export it to an external location or folder.
When bringing an Excel file into GcExcel .NET (importing a file or opening a file) and when saving GcExcel .NET files to an
Excel format (exporting), most of the data can be imported or exported successfully. The intention of providing the
support for import and export capability is to enable users to handle as much of the data and formatting of a spreadsheet
as possible.

GcExcel .NET also provides support for preserving the Japanese Ruby characters while executing the import and export
operations on an Excel file. Also, users can adjust cells containing Japanese Ruby characters with utmost accuracy after
performing other spreadsheet tasks like Insert, Delete, Copy, Cut, Merge, Clear, Sort operations etc.

Working With Import Flags

While opening a workbook, GcExcel .NET also provides you with several open options that can be used during the import
operation.

The ImportFlags enumeration allows users to import the workbook with the specified open options (a total of ten options
are available: NoFlag, Data and Formulas, Table, mergeArea, Style, ConditionalFormatting, DataValidation, PivotTable and
Shapes) as described in the table shared below.

Import Flag Option Description

NoFlag Refers to "No option". This option is used when you don't want to put any import
flag while opening the Excel file. This means that all the data in the worksheet will
be imported as it is.

Documents for Excel, .NET Edition 403

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Data Refers to "Read the Data". This option is used when you want to import only the
data in the worksheet while opening the Excel file.

Formulas Refers to "Read the Data and Formulas". This option is used when you want to
import both the data and the formulas in the worksheet while opening the Excel
file.

Table Refers to "Read the Tables". This option is used when you want to import only the
tables in the worksheet while opening the Excel file.

MergeArea Refers to "Read the Merge Cells". This option is used when you want to import only
the merged cells or spanned cells in the worksheet while opening the Excel file.

Style Refers to "Read the Styles". This option is used when you want to import only the
styles applied to the cells in the worksheet while opening the Excel file.

ConditionalFormatting Refers to "Read the Conditional Formatting". This option is used when you want to
import only the conditional formatting rule applied to the worksheet while opening
the Excel file.

DataValidation Refers to "Read the Data Validation". This option is used when you want to import
only the data validation rule applied to the worksheet while opening the Excel file.

PivotTable Refers to "Read the Pivot Tables". This option is used when you want to import only
the pivot tables in the worksheet while opening the Excel file.

Shapes Refers to "Read all the Shapes". This option is used when you want to import only
the shapes embedded in the worksheet while opening the Excel file.

The DoNotRecalculateAfterOpened property of the XlsxOpenOptions class allows you to set a boolean value (True or
False) which specifies whether or not the formulas will be recalculated when the file is being imported.

The IgnoreFormulas property of XlsxSaveOptions class, when set to true, allows you to export formula cells in GcExcel as
value cells in Excel. When workbook.Save is called, the resultant values for formula cells are calculated and are saved in
Excel.

Refer to the following example code in order to import and export .xlsx document.

C#

// Create workbook and access its first worksheet
Workbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];

// Assigning value to range
worksheet.Range["A3"].Value = 5;
worksheet.Range["A2"].Value = 5;
worksheet.Range["A1"].Value = 5;
worksheet.Range["B1"].Value = 5;

// Exporting .xlsx document
workbook.Save(@"savingfile.xlsx", SaveFileFormat.Xlsx);

// Exporting .xlsx document while setting password

Documents for Excel, .NET Edition 404

Copyright © 2021 GrapeCity, Inc. All rights reserved.

XlsxSaveOptions options = new XlsxSaveOptions();
options.Password = "Pwd";
workbook.Save(@"savingfile.xlsx", options);

 // Exporting .xlsx document by ignoring cell formulas
workbook.ActiveSheet.Range["A4"].Formula = "=Sum(A1+A2+A3)";
XlsxSaveOptions options2 = new XlsxSaveOptions();
options2.IgnoreFormulas = true;
workbook.Save(@"ignoreformulas.xlsx", options2);

// Importing .xlsx document
workbook.Open(@"Source.xlsx", OpenFileFormat.Xlsx);

// Importing .xlsx document with Open options

// Import only data from .xlsx document.
XlsxOpenOptions options = new XlsxOpenOptions();
options.ImportFlags = ImportFlags.Data;
workbook.Open(@"Source.xlsx", options);

// Don't recalculate after opened.
XlsxOpenOptions options1 = new XlsxOpenOptions();
options1.DoNotRecalculateAfterOpened = true;
workbook.Open(@"Source.xlsx", options1);

Export to PDF
GcExcel .NET allows you to export workbook to a PDF file. You can also apply styles, customize fonts, add security options,
configure document properties and adjust row height or column width while performing the export operation.

To save all visible spreadsheets in a workbook to a Portable Document File (PDF), use the Save() method of the
IWorkbook interface. Each worksheet in a workbook is saved to a new page in the PDF file. You can also export only the
current sheet (active sheet) to PDF format using the Save() method of the IWorksheet interface.

The handling of images in the case of PDF export is also very efficient. If a picture is used multiple times in a spreadsheet,
GcExcel maintains a single copy of the picture which reduces the size of exported PDF file.

Refer to the following example code to export a spreadsheet to a PDF file.

C#

//create workbook and add two sheets.
Workbook workbook = new Workbook();
IWorksheet sheet1 = workbook.Worksheets[0];
IWorksheet sheet2 = workbook.Worksheets.Add();

//export workbook to pdf file, the exported file has two pages.
workbook.Save(@"D:\workbook.pdf", SaveFileFormat.Pdf);

Documents for Excel, .NET Edition 405

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//just export a particular sheet to pdf file
sheet1.Save(@"D:\sheet1.pdf", SaveFileFormat.Pdf);

GcExcel also supports setting JavaScript in PDF documents by using OpenActionScript property of PdfSaveOptions
class. The JavaScript is executed when the saved PDF document is opened.

Refer to the following example code to set JavaScript in an Excel template which is processed to create a PDF form.

C#

Workbook workbook = new Workbook();
workbook.Open("SampleTemplate.xlsx");

workbook.ProcessTemplate();
PdfSaveOptions options = new PdfSaveOptions();

//Set JavaScript
options.OpenActionScript = "var fld1 = this.getField(\"num\");" +
"fld1.value = fld1.value;" +
"this.dirty = false;";

workbook.Save("SampleTemplate.pdf", options);

While executing the export operation, you can configure fonts, set style and specify the page setup options in order to
customize the PDF as per your preferences. Refer to the following topics for more details:

Configure Fonts and Set Style
Export Pivot Table Styles And Format
Export Shapes
Export Vertical Text
Shrink To Fit With Text Wrap
Control Pagination
Working with Page Setup
Support Security Options
Support Document Properties
Adjust Column Width and Row Height
Export Charts
Export Slicers
Export Barcodes
Export Signature Lines
Support Sheet Background Image
Support Background Color Transparency
Control Image Quality
Track Export Progress

While printing the PDF document, you can also configure to choose the paper source automatically based on PDF page
size. For more information, please refer to Configure Paper Source.

Documents for Excel, .NET Edition 406

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Note: The Export to PDF feature doesn't support exporting picture settings (such as LineFormat, FillFormat,
Brightness, Contrast, Watermark Color Type and black and white pictures in emf format) to PDF files.

Configure Fonts and Set Style
GcExcel .NET allows users to configure fonts and set style while saving their worksheets into the PDF format.

Before performing the export operation, users need to ensure that they set the FontsFolderPath property of
the Workbook class in order to specify the font that should be used while saving the PDF.

If the folder path to the font is not specified and the user is working on Windows OS, the path "C:\Windows\Fonts" will be
used by default. However, if the folder path to the font is not specified and the user is working on any other operating
system, it is necessary that the user sets the font folder path and copies the used font files to it from the folder
"C:\Windows\Fonts".

You can use the GetUsedFonts() method of the IWorkbook interface in order to get the collection of all the fonts that
are used in the workbook.

While saving PDF, GcExcel .NET uses the fonts specified in the Workbook.FontsFolderPath in order to render the PDF.
However, if the used font doesn't exist, it will make use of some fallback fonts. In case, fallback fonts don't exist in the file,
GcExcel .NET will throw the exception :"There is no available fonts. Please set a valid path to the FontsFolderPath property
of the Workbook!"

Refer to the following example code to see how you can confirgure fonts and set style while saving to a PDF.

C#

//create workbook and add two sheets.
Workbook workbook = new Workbook();
IWorksheet sheet1 = workbook.Worksheets[0];
IWorksheet sheet2 = workbook.Worksheets.Add();

//set style.
sheet1.Range["A1"].Value = "Sheet1";
sheet1.Range["A1"].Font.Name = "Wide Latin";
sheet1.Range["A1"].Font.Color = Color.Red;
sheet1.Range["A1"].Interior.Color = Color.Green;

//create a table in sheet1.
sheet1.Tables.Add(sheet1.Range["C1:E5"], true);

sheet2.Range["A1"].Value = "Sheet2";

//specify font path.
Workbook.FontsFolderPath = @"D:\Fonts";

//get the used fonts list in workbook, the list are:"Wide Latin", "Calibri"
var fonts = workbook.GetUsedFonts();

//export workbook to pdf file, the exported file has two pages.
workbook.Save(@"D:\workbook.pdf", SaveFileFormat.Pdf);

Documents for Excel, .NET Edition 407

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//just export sheet1 to pdf file.
sheet1.Save(@"D:\sheet1.pdf", SaveFileFormat.Pdf);

Note: The Export to PDF feature doesn't support the following styles:

a) Usage of Double, Single Acounting, Double Accounting underline, Superscript effect, Subscript effect.

b) Alignment Preferences like Center across selection, Fill alignment, Orientation, Text reading order etc.

c) Rectangle Gradient Fill is not supported.

Export Pivot Table Styles And Format
GcExcel .NET allows users to save Excel files containing distinct pivot table styles and formats into a PDF file.

With extensive support for exporting pivot table styles and format, users can customize how the pivot table is displayed in
the PDF format. This includes saving Excel files with custom pivot table layout, pivot table fields, orientation, page
size etc. into PDF files as per your specific preferences.

The Style property of the IPivotTable interface can be used to get or set the pivot table style. While exporting PDFs with
pivot table styles in GcExcel .NET, the following properties can be used:

Property Description

IPivotTable.ShowTableStyleColumnHeaders This property can be used to get or set whether the column headers
should be displayed in the Pivot table.

IPivotTable.ShowTableStyleRowHeaders This property can be used to get or set whether the row headers should
be displayed in the Pivot table.

IPivotTable.ShowTableStyleColumnStripes This property can be used to get or set whether the banded columns in
which even columns are formatted differently from odd columns.

IPivotTable.ShowTableStyleRowStripes This property can be used to get or set whether the banded rows in
which even row are formatted differently from odd rows.

IPivotTable.ShowTableStyleLastColumn This property can be used to get or set whether to display the grand
total columns style.

ITableStyle.ShowAsAvailablePivotStyle This property can be used to get or set whether the specified style is
shown as available in the pivot styles gallery.

IPivotField.NumberFormat This property can be used to get or set the current field's number
format string.

Using Code

Refer to the following example code in order to export Excel files with pivot table styles and format.

C#

// Initialize workbook
Workbook workbook = new Workbook();

Documents for Excel, .NET Edition 408

Copyright © 2021 GrapeCity, Inc. All rights reserved.

// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

// Create PivotTable
object[,] sourceData = new object[,] {
 { "Order ID", "Product", "Category", "Amount", "Date", "Country" },
 { 1, "Carrots", "Vegetables", 4270, new DateTime(2012, 1, 6), "United States" },
 { 2, "Broccoli", "Vegetables", 8239, new DateTime(2012, 1, 7), "United Kingdom" },
 { 3, "Banana", "Fruit", 617, new DateTime(2012, 1, 8), "United States" },
 { 4, "Banana", "Fruit", 8384, new DateTime(2012, 1, 10), "Canada" },
 { 5, "Beans", "Vegetables", 2626, new DateTime(2012, 1, 10), "Germany" },
 { 6, "Orange", "Fruit", 3610, new DateTime(2012, 1, 11), "United States" },
 { 7, "Broccoli", "Vegetables", 9062, new DateTime(2012, 1, 11), "Australia" },
 { 8, "Banana", "Fruit", 6906, new DateTime(2012, 1, 16), "New Zealand" },
 { 9, "Apple", "Fruit", 2417, new DateTime(2012, 1, 16), "France" },
 { 10, "Apple", "Fruit", 7431, new DateTime(2012, 1, 16), "Canada" },
 { 11, "Banana", "Fruit", 8250, new DateTime(2012, 1, 16), "Germany" },
 { 12, "Broccoli", "Vegetables", 7012, new DateTime(2012, 1, 18), "United States" },
 { 13, "Carrots", "Vegetables", 1903, new DateTime(2012, 1, 20), "Germany" },
 { 14, "Broccoli", "Vegetables", 2824, new DateTime(2012, 1, 22), "Canada" },
 { 15, "Apple", "Fruit", 6946, new DateTime(2012, 1, 24), "France" },
 };

worksheet.Range["A1:F16"].Value = sourceData;
var pivotcache = workbook.PivotCaches.Create(worksheet.Range["A1:F16"]);
var pivottable = worksheet.PivotTables.Add(pivotcache, worksheet.Range["H5"],
"pivottable1");

// Create PivotTable style
ITableStyle style = workbook.TableStyles.Add("pivotStyle");

// Set the table style as a pivot table style
style.ShowAsAvailablePivotStyle = true;
style.TableStyleElements[TableStyleElementType.WholeTable].Borders.LineStyle =
BorderLineStyle.DashDotDot;
style.TableStyleElements[TableStyleElementType.WholeTable].Borders.Color =
Color.FromArgb(204, 153, 255);
style.TableStyleElements[TableStyleElementType.WholeTable].Interior.Color =
Color.FromArgb(169, 208, 142);
style.TableStyleElements[TableStyleElementType.WholeTable].Font.Italic = true;
style.TableStyleElements[TableStyleElementType.WholeTable].Font.ThemeColor =
ThemeColor.Accent2;

// Apply the style to current pivot table
pivottable.Style = style;

// Configure pivot table settings for columns and rows
pivottable.ShowTableStyleColumnHeaders = true;

Documents for Excel, .NET Edition 409

Copyright © 2021 GrapeCity, Inc. All rights reserved.

pivottable.ShowTableStyleRowHeaders = true;
pivottable.ShowTableStyleColumnStripes = true;
pivottable.ShowTableStyleRowStripes = true;
pivottable.ShowTableStyleLastColumn = true;

// Add pivot field and set number format code

var field_product = pivottable.PivotFields[1];
field_product.Orientation = PivotFieldOrientation.RowField;
var field_Amount = pivottable.PivotFields[3];
field_Amount.Orientation = PivotFieldOrientation.DataField;

// Set number format code
field_Amount.NumberFormat = "#,##0";

// Saving workbook to PDF
workbook.Save(@"PivotTableStyleAndNumberFormat.pdf", SaveFileFormat.Pdf);

Export Shapes
GcExcel .NET provides extensive support for loading, saving, printing and exporting Excel files comprising shapes and
other drawing objects embedded in the worksheets.

The IsPrintable property of the IShape interface can be used to get or set whether the object will be printed in the PDF
document. By default, this value is TRUE and hence the shapes embedded in the Excel files are printed. In case you do not
want to export shapes to the PDF files, this value must be set to FALSE.

The Export Shapes to PDF feature allows users to print and export different types of shapes such as callouts, lines,
rectangles, basic shapes, block arrows, flowcharts, equation shapes, stars and banners etc. This feature is useful especially
when the following scenarios are encountered while working with spreadsheets:

When users have Excel files with graphs, reports and dashboards containing various shapes that they want to
export to a PDF file.
With the help of this feature, users can export spreadsheets that contain preset shapes, basic shapes, custom
shapes and grouped shapes with different operations like rotation, flipping, connector arrows and text etc. into a
PDF file.
When users need to export Excel template files and spreadsheets containing shapes with different types of fills (like
Solid fill, Gradient fill etc.) while saving to a PDF file.

Using Code

Refer to the following example code in order to export shapes to PDF.

C#

// Initialize workbook
Workbook workbook = new Workbook();

Documents for Excel, .NET Edition 410

Copyright © 2021 GrapeCity, Inc. All rights reserved.

// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

// Adding Shapes
IShape ShapeBegin = worksheet.Shapes.AddShape(AutoShapeType.CloudCallout, 1, 1, 100,
100);
IShape EndBegin = worksheet.Shapes.AddShape(AutoShapeType.Wave, 200, 200, 100, 100);

// Adding Connector Shape
IShape ConnectorShape = worksheet.Shapes.AddConnector(ConnectorType.Straight, 1, 1, 101,
101);

// Connect shapes by connector shape
ConnectorShape.ConnectorFormat.BeginConnect(ShapeBegin, 3);
ConnectorShape.ConnectorFormat.EndConnect(EndBegin, 0);

// Get second shape in current worksheet(here it's a connector shape) and do not print
it(default value is true)
worksheet.Shapes[2].IsPrintable = false;

// Saving workbook to PDF
workbook.Save(@"ExportingShapesToPDF.pdf", SaveFileFormat.Pdf);

Note: While exporting Excel files containing shapes into the PDF format, some of the exported shapes including the
shapes with rectangular gradient fill and path gradient fill; shapes with multiple lines and gradient lines; shape effects
like text distribution etc. may not look exactly the same as in Excel.

Export Vertical Text
GcExcel .NET allows users to export Excel files with vertical text to PDF without any issues.

While saving an Excel file with vertical text correctly to a PDF file, the following properties can be used -

IRange.Orientation - The Orientation property of the IRange interface sets the orientation of the text.
IRange.Font.Name - Sets the specific font name using the Font property of the IRange interface. If the font name
starts with "@", each double-byte character in the text is rotated to 90 degrees.

Refer to the following example code in order to export Vertical Text to PDF.

C#

// Create workbook and a worksheet.
Workbook workbook = new Workbook();
IWorksheet sheet = workbook.Worksheets[0];

// Specify the font name
sheet.Range["A1"].Font.Name = "@Meiryo";

Documents for Excel, .NET Edition 411

Copyright © 2021 GrapeCity, Inc. All rights reserved.

// Set orientation and wrap text
sheet.Range["A1"].Orientation = -90;
sheet.Range["A1"].WrapText = true;

// Set value and configure horizontal and vertical alignment
sheet.Range["A1"].Value = "日本列島で使用されてきた言語である。GrapeCity";
sheet.Range["A1"].HorizontalAlignment = HorizontalAlignment.Right;
sheet.Range["A1"].VerticalAlignment = VerticalAlignment.Top;

// Set column width and row height

sheet.Range["A1"].ColumnWidth = 27;
sheet.Range["A1"].RowHeight = 190;

// Export the worksheet with vertical text ("sheet") to pdf file.
sheet.Save(@"D:\sheet.pdf", SaveFileFormat.Pdf);

Note: The following limitations must be kept in mind while exporting Excel files with vertical text to PDF -

The orientation can only be set to 0, 90, -90 and 255. Other values will be treated as 0 while rendering the
PDF file.
If the font name starts with "@" and the orientation is 255, GcExcel will ignore the "@".

Shrink To Fit With Text Wrap
GcExcel .NET enables users to implement the shrink to fit feature in a cell along with the wrapped text. The Shrink to Fit
feature automatically reduces the font size of the text so that it fits inside the cells of the spreadsheet without wrapping.

Advantage of Using Shrink To Fit Feature

The Shrink to Fit feature implemented with wrapped text is useful especially when you need to deal with spreadsheets
possessing tightly constrained layouts with vertical spaces and wrapped text. Also, this feature can be used when users
don't want to opt for Auto fit row height and column width option to adjust the column width and row height as per their
preferred worksheet layout.

The following points should be kept in mind while working with the shrink to fit feature :

If you're exporting your Excel files to a pdf file or stream, the PdfSaveOptions class can be used to configure the
save settings.
In order to get or set the settings about enabling the shrink to fit feature on the wrapped text, you can use the
the ShrinkToFitSettings property of the PdfSaveOptions class.
The CanShrinkToFitWrappedText property of the IShrinkToFitSettings interface can be used to get or set
whether to apply shrink to fit feature on the wrapped text. If the value is true, the font size of the wrapped text may
be reduced so that the wrapped text can be fully displayed.
The MinimumFont property of the IShrinkToFitSettings interface can be used to get or set the minimum font
size while enabling the shrink to fit feature.
The Ellipsis property of the IShrinkToFitSettings interface can be used to get or set the omitted string if the

Documents for Excel, .NET Edition 412

Copyright © 2021 GrapeCity, Inc. All rights reserved.

wrapped text is not fully displayed. This can be used with the MinimumFont property.

Using Code

Refer to the following example code to allow users to use the shrink to fit feature with text wrap.

C#

// Initialize workbook
Workbook workbook = new Workbook();

// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

// Configure page settings
worksheet.PageSetup.PrintGridlines = true;
worksheet.Range["A1"].RowHeightInPixel = 10;
worksheet.Range["A1"].ColumnWidthInPixel = 70;
worksheet.Range["A1"].WrapText = true;
worksheet.Range["A1"].ShrinkToFit = true;
worksheet.Range["A1"].Value = "GrapeCity Documents For Excel";

// Setting PdfSaveOptions
PdfSaveOptions pdfSaveOptions = new PdfSaveOptions();
pdfSaveOptions.ShrinkToFitSettings.CanShrinkToFitWrappedText = true;
pdfSaveOptions.ShrinkToFitSettings.MinimumFont = 12;
pdfSaveOptions.ShrinkToFitSettings.Ellipsis = "~";

// Saving the workbook to PDF
workbook.Save("ShrinkToFitWrappedText.pdf", pdfSaveOptions);

Control Pagination
GcExcel .NET enables users to manage pagination while exporting to a PDF file.

The pagination settings are used to control how the data lying in the worksheets breaks across the pages in the PDF file.
The PrintManager class contains the properties and methods that help users in handling custom pagination
requirements and preferences.

The custom pagination process works in four basic steps as described below.

Step 1 - Create an instance of the PrintManager class
Step 2 - Get the default pagination information of the workbook using the Paginate() method.
Step 3 - Adjust pagination using different properties and methods of the PrintManager class.
Step 4 - Save the PDF file by using the SavePDF() method.

While configuring the pagination options for a workbook containing multiple worksheets, users have complete control
over the flow of content (both textual and graphic) across the pages in the PDF file. Further, users can customize the PDF
file by adjusting the automatic page breaks while adding or deleting the pages, and modifying the printing information on

Documents for Excel, .NET Edition 413

Copyright © 2021 GrapeCity, Inc. All rights reserved.

each page of the PDF file. Also, users can keep some rows together in a page; save the content from more than one
worksheet to a single PDF; display custom cell ranges inside the exported PDF file; configure custom page settings (like
page number, page count, page content, row headers, column headers, title columns, tail columns, page margins, page
header, page footer, paper width, paper height etc.); save different header information on different pages; save the last
page of the PDF file without any headers, export custom page information and export only some specific pages (or
worksheets) in the PDF file.

For more information on handling pagination while working with spreadsheets, refer to the following topics:

Render Excel Range Inside PDF
Export Multiple Sheets To One Page
Keep Rows Together Over Page Breaks
Delete Blank Pages From Middle
Export Different Headers On Different Pages
Export Last Page Without Headers
Export Custom Page Information
Export Specific Pages To PDF
Save Multiple Workbooks to Single PDF
Export Worksheet to PDF

Render Excel Range Inside PDF
GcExcel .NET enables users to render Excel cell ranges inside PDF.

This feature is useful especially when you're dealing with bulk data in the spreadsheets and you want to render only
specific Excel range inside an existing PDF file. For instance - let's say you have a worksheet containing large amounts of
sales data with fields such as "Number of Products Sold", "Area Sales Manager", "Region" etc. but you want to export only
a chunk of useful data (like only "Number of Products Sold" and "Region") at some location in a PDF file and not all the
data (you don't want to include the "Area Sales Manager" information). In this scenario, the "Render Excel Range Inside
PDF" feature can be used to select some specific ranges in the worksheet and render them to specific location in a PDF file
to generate full PDF reports.

In order to render Excel range inside the PDF file, you need to first create an instance of the PrintManager class and
then use the Draw() method to render the Excel range on a PDF page at a location. In case, you want to add some extra
information in your PDF file (data which is not present in your Excel file), you can use the AppendPage() method of
the PrintManager class after configuring all the pagination settings. Finally, call
the UpdatePageNumberAndPageSettings() method in order to update the indexes of the page number and the page
settings for each page. When everything is done, simply save your PDF file using the SavePDF() method.

Note: In order to render Excel cell ranges inside PDF, you should have a valid license for GrapeCity Documents for
PDF.

Refer to the following example code to allow users to render Excel ranges inside the PDF file .

C#

// Initialize workbook
Workbook workbook = new Workbook();

// Fetch default worksheet

Documents for Excel, .NET Edition 414

Copyright © 2021 GrapeCity, Inc. All rights reserved.

IWorksheet worksheet = workbook.Worksheets[0];

// Set values
worksheet.Range["A4:C4"].Value = new string[]
{ "Device", "Quantity", "Unit Price" };
worksheet.Range["A5:C8"].Value = new object[,]
 {
 { "T540p", 12, 9850 },
 { "T570", 5, 7460 },
 { "Y460", 6, 5400 },
 { "Y460F", 8, 6240 }
 };

// Set styles
worksheet.Range["A4:C4"].Font.Bold = true;
worksheet.Range["A4:C4"].Font.Color = Color.White;
worksheet.Range["A4:C4"].Interior.Color = Color.LightBlue;
worksheet.Range["A5:C8"].Borders[BordersIndex.InsideHorizontal].Color =
Color.Orange;
worksheet.Range["A5:C8"].Borders[BordersIndex.InsideHorizontal].LineStyle =
BorderLineStyle.DashDot;

/* NOTE: To use this feature, you should have a valid license
for GrapeCity Documents for PDF.*/

// Create a PDF document
GcPdfDocument doc = new GcPdfDocument();
Page page = doc.NewPage();
GcPdfGraphics g = page.Graphics;

// Create an instance of the PrintManager class
PrintManager printManager = new PrintManager();

// Draw the Range "A4:C8" to the specified location on the page
printManager.Draw(page, new PointF(30, 100), worksheet.Range["A4:C8"]);

// Save the modified pages into PDF file
doc.Save(@"RenderExcelRangesInsidePDFBasic.pdf");

Refer to the following example code to allow users to render Excel ranges inside the PDF file along with some custom
textual information at runtime to the specified location on the page.

C#

// Create a PDF file stream
FileStream outputStream =
new FileStream("RenderExcelRangesInsidePDFAdvance.pdf", FileMode.Create);

Documents for Excel, .NET Edition 415

Copyright © 2021 GrapeCity, Inc. All rights reserved.

// Create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();
Stream fileStream =
GetResourceStream("xlsx\\FinancialReport.xlsx");
workbook.Open(fileStream);
IWorksheet worksheet = workbook.Worksheets[0];

/* NOTE: To use this feature, you should have a valid license
 for GrapeCity Documents for PDF.*/

// Create a PDF document
Pdf.GcPdfDocument doc = new Pdf.GcPdfDocument();
doc.Load(GetResourceStream("Acme-Financial Report 2018.pdf"));

// Create an instance of the PrintManager class
Excel.PrintManager printManager = new Excel.PrintManager();

// Draw the contents of the sheet3 to the fourth page
IRange printArea1 = workbook.Worksheets[2].Range["A3:C24"];
SizeF size1 = printManager.GetSize(printArea1);
RectangleF position1 =
doc.FindText(new GrapeCity.Documents.Pdf.FindTextParams
("Proposition enhancements are", true, true),
new GrapeCity.Documents.Common.OutputRange(4, 4))[0].Bounds.ToRect();
printManager.Draw(doc.Pages[3],
new RectangleF(position1.X + position1.Width +
70, position1.Y, size1.Width, size1.Height), printArea1);

// Draw the contents of the sheet1 to the fifth page
IRange printArea2 = workbook.Worksheets[0].Range["A4:E29"];
SizeF size2 = printManager.GetSize(printArea2);
RectangleF position2 =
doc.FindText(new GrapeCity.Documents.Pdf.FindTextParams(
"expenditure, an improvement in working", true, true),
new GrapeCity.Documents.Common.OutputRange(5, 5))[0].Bounds.ToRect();
printManager.Draw(doc.Pages[4],
new RectangleF(position2.X, position2.Y +
position2.Height + 20, size2.Width, size2.Height), printArea2);

// Draw the contents of the sheet2 to the sixth page
IRange printArea3 = workbook.Worksheets[1].Range["A2:E28"];
SizeF size3 = printManager.GetSize(printArea3);
RectangleF position3 =
doc.FindText(new GrapeCity.Documents.Pdf.FindTextParams
("company will be able to continue", true, true),
new GrapeCity.Documents.Common.OutputRange(6, 6))[0].Bounds.ToRect();
printManager.Draw(doc.Pages[5],
new RectangleF(position3.X, position3.Y +

Documents for Excel, .NET Edition 416

Copyright © 2021 GrapeCity, Inc. All rights reserved.

position3.Height + 20, doc.Pages[5].Size.Width -
position3.X * 2 - 10, size3.Height), printArea3);

// Save the modified pages into PDF file
doc.Save(outputStream);

// Close the PDF stream
outputStream.Close();

}

static Stream GetResourceStream(string resourcePath)
 {
 string resource = "RenderExcelRangesInsideAPDF.Resource." +
 resourcePath.Replace("\\", ".");
 var assembly = typeof(Program).GetTypeInfo().Assembly;
 return assembly.GetManifestResourceStream(resource);
 }

Export Multiple Sheets To One Page
GcExcel .NET enables users to export multiple worksheets to a single page in the PDF file .

This feature is useful especially when you want to analyse all the crucial data at one place in order to facilitate the sharing,
manipulation and printing of data in an efficient way. For instance - let's say you have a workbook with multiple
worksheets wherein you want to export the content of some worksheets (containing similar type of data) so that all the
related data appears on the same page and is saved into a specific page in the PDF file. In this scenario, you can use this
feature to export and print data from more than one worksheet to a single page in the PDF file as per your custom
requirements and preferences.

In order to export multiple worksheets into a single page of the PDF file, users need to create an instance of the
PrintManager class, get the default pagination settings of the workbook using the Paginate() method, use the Draw()
method of the PrintManager class and finally save the PDF file using the SavePDF() method.

Note: In order to export multiple sheets to one page, you should have a valid license for GrapeCity Documents for
PDF.

Refer to the following example code to allow users to export multiple worksheets to a single page in the PDF file.

C#

// Initialize workbook
Workbook workbook = new Workbook();

// Open Excel file
workbook.Open("MultipleSheetsOnePage.xlsx");

/* NOTE: To use this feature, you should have a valid license

Documents for Excel, .NET Edition 417

Copyright © 2021 GrapeCity, Inc. All rights reserved.

for GrapeCity Documents for PDF.*/

// Create a PDF document
GcPdfDocument doc = new GcPdfDocument();

// This page will save data for multiple pages
Page page = doc.NewPage();

// Create an instance of the PrintManager class
PrintManager printManager = new PrintManager();

// Get the pagination information of the workbook
IList<PageInfo> pages = printManager.Paginate(workbook);

/* Divide the multiple pages into one row and
 two columns and print them on one page */
printManager.Draw(page, pages, 1, 2);

// Save the document to PDF file
doc.Save(@"PrintMultiplePagesToOnePage.pdf");

Keep Rows Together Over Page Breaks
GcExcel .NET enables users to keep some rows together over page breaks while exporting to a PDF file.

This feature is useful especially when you have data lying in large number of rows in the worksheet that you want to
export to a PDF file. For instance - let's say you have a spreadsheet having multiple groups of rows that are often hidden,
but ultimately modify the number of pages and page breaks while printing. Now, you want to export your Excel file to
PDF in such a way that it keeps some groups of rows together so that they don't split across page breaks or pages
when the print operation is executed. In such a scenario, it is extremely helpful to utilize this feature to achieve flawless
printing experience and accurate content publishing while exporting to the PDF file.

In order to keep some groups of rows together over page breaks, you need to first create a cell range including the rows
that you want to show together in the PDF file. Next, create an instance of the PrintManager class and use the Paginate()
method to ensure the desired rows are displayed together. When you are done, simply save your PDF file using
the SavePDF() method.

Using Code

Refer to the following example code to allow users to keep some rows together over page breaks while exporting to a
PDF file.

C#

// Initialize workbook
Workbook workbook = new Workbook();

// Open Excel file
workbook.Open("KeepTogether.xlsx");

Documents for Excel, .NET Edition 418

Copyright © 2021 GrapeCity, Inc. All rights reserved.

// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

/* The first page of the natural pagination is from row 1st
 to 36th the second page is from row 37th to 73rd */
IList<IRange> keepTogetherRanges = new List<IRange>();

/* The row 37th and 38th need to keep together.
 So the pagination results are: the first page is from row 1st
 to 35th, the second page is from row 36th to 73rd*/
keepTogetherRanges.Add(worksheet.Range["36:37"]);

// Create an instance of the PrintManager class
PrintManager printManager = new PrintManager();

// Get the pagination information of the worksheet
IList<PageInfo> pages =
printManager.Paginate(worksheet, keepTogetherRanges, null);

// Save the modified pages into PDF file
printManager.SavePDF(@"KeepTogether.pdf", pages);

Delete Blank Pages From Middle
While exporting a workbook to a PDF file, sometimes you may encounter a couple of extra pages that are completely
blank. In a workbook with large number of worksheets, it is extremely difficult to find out which pages are empty and even
more time-consuming to delete them from the middle without impacting the pagination.

In order to avoid printing and publishing of blank pages, GcExcel .NET enables users to scan through the pages of the
PDF, find out which pages are blank and then exclude the blank pages from the middle while also updating the pagination
information accurately.

For removing blank pages from your PDF file, you need to first create an instance of the PrintManager class and use
the Paginate method to get the default pagination of the workbook. Now, you can use the HasPrintContent method to
check whether the pages have content or not. Finally, call the UpdatePageNumberAndPageSettings method in order to
update the indexes of the page number and the page settings for each page. When you are done, simply save your PDF
file using the SavePDF() method.

Using Code

Refer to the following example code to allow users to delete the blank pages in the middle while exporting to a PDF file.

C#

// Initialize workbook
Workbook workbook = new Workbook();

Documents for Excel, .NET Edition 419

Copyright © 2021 GrapeCity, Inc. All rights reserved.

// Open Excel file
workbook.Open("DeletingBlankPages.xlsx");

// Create an instance of the PrintManager class
PrintManager printManager = new PrintManager();

// Get the natural pagination information of the workbook
IList<PageInfo> pages = printManager.Paginate(workbook);

// Remove empty pages
IList<PageInfo> newPages = new List<PageInfo>();

foreach (PageInfo page in pages)
 {
 // True if there is content in the range to print
 if (printManager.HasPrintContent(page.PageContent.Range))
 {
 newPages.Add(page);
 }
 }

// Update the page number and the page settings of each page
printManager.UpdatePageNumberAndPageSettings(newPages);

// Save to PDF file
printManager.SavePDF("DeleteBlankPagesIntheMiddle.pdf", newPages);

Export Different Headers On Different Pages
GcExcel .NET enables users to export different headers on different pages of the PDF file. This feature is useful especially
when you have different information on each page of the PDF file and you want to provide different headers to
each page of the PDF.

In order to configure different headers for different pages in the PDF file, you can use the TitleRowStart
property, the TitleRowEnd property, and other properties of the RepeatSetting class. When you are done, simply
create an instance of the PrintManager class, get the default pagination information using the Paginate() method and
finally save your PDF file using the SavePDF() method.

Using Code

Refer to the following example code in order to export different headers on different pages while exporting to a PDF file.

C#

// Initialize workbook
Workbook workbook = new Workbook();

Documents for Excel, .NET Edition 420

Copyright © 2021 GrapeCity, Inc. All rights reserved.

// Open Excel file
workbook.Open("MultipleHeaders.xlsx");

// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

IList<RepeatSetting> repeatSettings = new List<RepeatSetting>();

// The title rows of the "B2:F87" is "$2:$2"
RepeatSetting repeatSetting = new RepeatSetting();
repeatSetting.TitleRowStart = 1;
repeatSetting.TitleRowEnd = 1;
repeatSetting.Range = worksheet.Range["B2:F87"];
repeatSettings.Add(repeatSetting);

// The title rows of the "B89:F146" is "$89:$89"
RepeatSetting repeatSetting2 = new RepeatSetting();
repeatSetting2.TitleRowStart = 88;
repeatSetting2.TitleRowEnd = 88;
repeatSetting2.Range = worksheet.Range["B89:F146"];
repeatSettings.Add(repeatSetting2);

// Create an instance of the PrintManager class
PrintManager printManager = new PrintManager();
worksheet.PageSetup.RightMargin = 10;

// Get the pagination information of the worksheet
IList<PageInfo> pages = printManager.Paginate(worksheet, null, repeatSettings);

// Save the modified pages into PDF file
printManager.SavePDF(@"ManageHeadersOnDifferentPages.pdf", pages);

Export Last Page Without Headers
GcExcel .NET enables users to export the last page of a PDF file without headers while keeping the headers intact in rest of
the pages across the PDF file. For instance - While saving a workbook to a PDF file, you may sometimes have data in the
last page of the PDF that doesn't need any headers. In such a scenario, this feature can be helpful in order to save the last
page of the PDF without displaying any header information.

In order to export the last page without headers while saving to a PDF file, you need to first get the default pagination by
using the Paginate() method of the PrintManager class. Then, you can use the PageContent property of the PageInfo
class and the TitleRowStart property of the PageContentInfo class in order to modify the header index of the last
page. When you are done, simply save your file using the SavePDF() method.

Using Code

Refer to the following example code to allow users to save the last page of the PDF without any headers while exporting

Documents for Excel, .NET Edition 421

Copyright © 2021 GrapeCity, Inc. All rights reserved.

to a PDF file.

C#

// Initialize workbook
Workbook workbook = new Workbook();

// Open Excel file
workbook.Open("ExcelData.xlsx");

// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

// Create an instance of the PrintManager class
PrintManager printManager = new PrintManager();

// Repeat rows at the top of each page while saving PDF
worksheet.PageSetup.PrintTitleRows = "$1:$2";

// Get the natural pagination information of the workbook
IList<PageInfo> pages = printManager.Paginate(workbook);

// Modify the print header of the last page
pages[pages.Count - 1].PageContent.TitleRowStart = -1;

// Save the modified pages into PDF file
printManager.SavePDF("98-ExportLastPageWithoutHeaders.pdf", pages);

Export Custom Page Information
GcExcel .NET enables users to save and print custom page information while exporting to a PDF file.

For instance - Sometimes, users may want to apply different page settings and display custom page number, page count,
title rows, tail rows, column headers, row headers, title columns, tail columns, range, paper width, paper height, page
margins, page headers, page footers etc. as per their own preferences while exporting to a PDF file or while printing a PDF
file. In this scenario, they can use this feature to showcase the desired page information instead of the default page
information in the PDF file.

Depending upon the specific requirements of the users, the custom page information can be exported using the following
APIs:

Creating and using an instance of the PageInfo class - The PageInfo object represents a page containing all the
information needed for printing. This includes page number, page count, page content and page settings, etc.

Creating and using an instance of the PageContentInfo class- The PageContentInfo object represents the data
area of a page which includes row header, title rows, tail rows, column header, title columns, tail columns, range,
etc.

Creating and using an instance of the PageSettings class- The PageSettings object contains all the properties

Documents for Excel, .NET Edition 422

Copyright © 2021 GrapeCity, Inc. All rights reserved.

effecting the page settings including the paper width, paper height, page margins, page header, page footer, etc.

Using Code

Refer to the following example code to allow users to export custom page information while saving the workbook to a
PDF file.

C#

// Initialize workbook
Workbook workbook = new Workbook();

// Open Excel file
workbook.Open("KeepTogether.xlsx");

// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

// Create an instance of the PrintManager class
PrintManager printManager = new PrintManager();

/* Get the natural pagination information of the worksheet.
 The first page of the natural pagination is "A1:F37",
 the second page is from row "A38:F73" */
IList<PageInfo> pages = printManager.Paginate(worksheet);

// Customize the page information. The first page is "A1:F36"
pages[0].PageContent.Range = worksheet.Range["A1:F36"];

/* The center header of the first page will
 show the text "Budget summary report" */
pages[0].PageSettings.CenterHeader =
"&KFF0000&18 Budget summary report";

/* The center footer of the first page will
 show the page number "1" */
pages[0].PageSettings.CenterFooter =
"&KFF0000&16 Page &P";

// The second page is "A37:F73"
pages[1].PageContent.Range =
worksheet.Range["A37:F73"];

// Save the modified pages into PDF file
printManager.SavePDF(@"CustomPageInfos.pdf", pages);

Documents for Excel, .NET Edition 423

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Export Specific Pages To PDF
GcExcel .NET enables users to export only some specific worksheets in the workbook (and not the entire workbook) into
the pages of the PDF file.

This feature is useful especially when you have a workbook containing large number of worksheets. For instance - While
saving to a PDF file, you may not want to export the entire workbook containing multiple worksheets and want only some
important worksheets to be saved to the PDF file. In this scenario, you can use this feature to generate a custom PDF file
as per your requirements.

In order to export specific pages to the PDF file, create an instance of the PrintManager class and get the default
pagination using the Paginate() method. Next, you need to specify the pages that you want to export or print. Finally, call
the UpdatePageNumberAndPageSettings() method in order to update the indexes of the page number and the page
settings for each page. When you are done, simply save your PDF file using the SavePDF() method.

Using Code

Refer to the following example code to export some specific pages to the PDF file.

C#

// Initialize workbook
Workbook workbook = new Workbook();

// Open Excel file
workbook.Open("PrintSpecificPDFPages.xlsx");

// Create an instance of the PrintManager class
PrintManager printManager = new PrintManager();

// Get the natural pagination information of the workbook
IList<PageInfo> pages = printManager.Paginate(workbook);

// Pick some pages to print
IList<PageInfo> newPages = new List<PageInfo>();
newPages.Add(pages[0]);
newPages.Add(pages[2]);

/* Update the page number and the page settings of
 each page. The page number is continuous */
printManager.UpdatePageNumberAndPageSettings(newPages);

// Save the pages into PDF file
printManager.SavePDF(@"PrintSpecificPages.pdf", newPages);

Save Multiple Workbooks to Single PDF
GcExcel .NET allows users to save multiple workbooks into a single Portable Document File (PDF) by using the SavePDF()

Documents for Excel, .NET Edition 424

Copyright © 2021 GrapeCity, Inc. All rights reserved.

method of the PrintManager class. Each workbook is saved to a new page in the PDF file. The information in the PDF
such as the page number, number of pages, odd and even pages, first page etc. is saved on the basis of the final
pagination results.

Advantage of Saving Multiple Workbooks to Single PDF File

This feature is useful especially when you need consolidated information at one place for enhanced analysis and
visualization. For instance - let's say you have sales information about different versions of a product in different
workbooks. Instead of sharing multiple spreadsheets or PDF files; you can share a combined PDF (by saving all the
workbooks to a single PDF file) showcasing the annual sales figures of the product. This will not only help users to analyse
all the crucial information at one place but it will also facilitate them in sharing, manipulating and printing all the sales
data in an efficient way.

Refer to the following example code in order to export a spreadsheet to a PDF file.

C#

// Initialize workbook1
Workbook workbook1 = new Workbook();

// Open an Excel file
workbook1.Open("Book1.xlsx");
workbook1.Worksheets[0].PageSetup.CenterFooter = "&P of &N";

// Set page header with some company logo
workbook1.Worksheets[0].PageSetup.CenterHeader = "&G";
workbook1.Worksheets[0].PageSetup.CenterHeaderPicture.Filename = "logo.png";
workbook1.Worksheets[0].PageSetup.CenterHeaderPicture.Width = 150;
workbook1.Worksheets[0].PageSetup.CenterHeaderPicture.Height = 50;
workbook1.Worksheets[0].PageSetup.TopMargin = 100;
workbook1.Worksheets[1].PageSetup.CenterFooter = "&P of &N";

// Set page header with some company logo
workbook1.Worksheets[1].PageSetup.CenterHeader = "&G";
workbook1.Worksheets[1].PageSetup.CenterHeaderPicture.Filename = "logo.png";
workbook1.Worksheets[1].PageSetup.CenterHeaderPicture.LockAspectRatio = false;
workbook1.Worksheets[1].PageSetup.CenterHeaderPicture.Width = 150;
workbook1.Worksheets[1].PageSetup.CenterHeaderPicture.Height = 50;
workbook1.Worksheets[1].PageSetup.TopMargin = 100;

// Initialize workbook2
Workbook workbook2 = new Workbook();

// Open an Excel file
workbook2.Open("Book2.xlsx");
workbook2.Worksheets[0].PageSetup.CenterFooter = "&P of &N";
workbook2.Worksheets[0].PageSetup.CenterHeader = "GrapeCity";
workbook2.Worksheets[0].PageSetup.TopMargin = 100;

// Create an instance of the PrintManager class

Documents for Excel, .NET Edition 425

Copyright © 2021 GrapeCity, Inc. All rights reserved.

PrintManager printManager = new PrintManager();

// Save the workbook1 and workbook2 into the pdf file
printManager.SavePDF(@"SaveDiffWorkBooksToOnePDF.pdf", workbook1, workbook2);

Export Worksheet to PDF
GcExcel .NET provides the option to paginate a worksheet automatically, according to page boundaries, while exporting to
PDF file.

The GetPaginationInfo method of PrintManager class gets an array of the page boundaries for horizontal and vertical
paging. The method needs to be called separately for horizontal and vertical pagination. The retrieved pagination
information is based on the page setup settings. The print area of the worksheet can also be defined. In case it is not
defined, the default area is considered from cell A1 till the last cell where any cell data is present.

In addition to the page setup settings, you can also define ranges which need to be kept together and repeat settings of a
range by using the overload of GetPaginationInfo method.

Using Code

Refer to the following example code to paginate a worksheet while exporting to PDF file based on the page setup
settings.

C#

IWorkbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];

// The row and column headings are printed
worksheet.PageSetup.PrintHeadings = true;
// The range "B6:N80" will be printed
worksheet.PageSetup.PrintArea = "B6:N80";

// Set data
worksheet.Range["B6:S8"].Value = "1";
// Add a table
worksheet.Tables.Add(worksheet.Range["B6:N20"], true);

PrintManager printManager = new PrintManager();

// The columnIndexs is [9, 13], this means that the horizontal direction is split after
the column 10th and 14th
IList<int> columnIndexs = printManager.GetPaginationInfo(worksheet,
PaginationOrientation.Horizontal);
Console.WriteLine("In horizontal direction, page is split after column : " +
columnIndexs[0].ToString() + " & " + columnIndexs[1].ToString());

// The rowIndexs is [50, 79], this means that the vertical direction is split after the

Documents for Excel, .NET Edition 426

Copyright © 2021 GrapeCity, Inc. All rights reserved.

row 51th and 80th
IList<int> rowIndexs = printManager.GetPaginationInfo(worksheet,
PaginationOrientation.Vertical);
Console.WriteLine("In vertical direction, page is split after row : " +
rowIndexs[0].ToString() + " & " + rowIndexs[1].ToString());

worksheet.Save(@"GetPagination.pdf", SaveFileFormat.Pdf);

Refer to the following example code to paginate a worksheet while exporting to PDF file based on the page setup
settings, range to be kept together and repeat settings.

C#

IWorkbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];

// The row and column headings are printed
worksheet.PageSetup.PrintHeadings = true;
// The range "B6:N80" will be printed
worksheet.PageSetup.PrintArea = "B6:N80"; ;

// Set data
worksheet.Range["B60:N80"].Value = 1;
// Add a table
worksheet.Tables.Add(worksheet.Range["B6:N20"], true);

// The row 6th will be printed at the top of each page
IList<RepeatSetting> repeatSettings = new List<RepeatSetting>();
RepeatSetting repeatSetting = new RepeatSetting();
repeatSetting.TitleRowStart = 5;
repeatSetting.TitleRowEnd = 5;
repeatSetting.Range = worksheet.Range["B6:N80"];
repeatSettings.Add(repeatSetting);

// The rows from 25th to 60th should be paged to one page
IList<IRange> keepTogetherRanges = new List<IRange>();
keepTogetherRanges.Add(worksheet.Range["$25:$60"]);

PrintManager printManager = new PrintManager();

// The columnIndexs is [9, 13], this means that the horizontal direction is split after
the column 10th and 14th.
IList<int> columnIndexs = printManager.GetPaginationInfo(worksheet,
PaginationOrientation.Horizontal, keepTogetherRanges, repeatSettings);
// The rowIndexs is [23, 66, 79], this means that the vertical direction is split after
the row 24th, 67th and 80th.
IList<int> rowIndexs = printManager.GetPaginationInfo(worksheet,
PaginationOrientation.Vertical, keepTogetherRanges, repeatSettings);

Documents for Excel, .NET Edition 427

Copyright © 2021 GrapeCity, Inc. All rights reserved.

IList<PageInfo> pages = printManager.Paginate(worksheet, keepTogetherRanges,
repeatSettings);
printManager.SavePDF(@"GetPaginationRangesRepeatSettings.pdf", pages);

Working With Page Setup
GcExcel .NET allows users to paginate each worksheet using the properties of the IPageSetup interface.

You can customize the page size, print area, print title rows, print title columns; specify horizontal page breaks, vertical
page breaks, the maximum number of pages for horizontal and vertical pagination etc. along with zoom and scale
factorsas per your preferences while exporting a spreadsheet to a PDF file.

In order to set pagination in a workheet, users can explore the following properties of the IPageSetup interface and
the IWorksheet interface:

Settings Description

IPageSetup.PaperSize This property can be used to determine the size of each page. For more information
on implementation of this property, refer to Configure Paper Settings.

IPageSetup.Orientation This property can be used to specify whether the worksheet should be printed in
landscape orientation or portrait orientation. For more information on implementation
of this property, refer to Configure Page Settings.

IPageSetup.PrintTitleRows This property can be used to specify the rows that you want to print at the top of each
page. For more information on implementation of this property, refer to Configure
Rows to Repeat at Top and Bottom.

IPageSetup.PrintTitleColumns This property can be used to specify the columns that you want to print at the left of
each page. For more information on implementation of this property, refer
to Configure Columns to Repeat at Left and Right.

IPageSetup.PrintArea This property can be used to specify the print area in a worksheet. If the print area is
not specified by the user, the used range of the sheet is printed by default. For more
information on implementation of this property, refer to Configure Print Area.

IPageSetup.Zoom This property can be used to use the result of zoom in order to paginate a worksheet.
For more information on implementation of this property, refer to Configure Paper
Settings.

IPageSetup.FitToPagesWide This property can be used to specify the maximum number of pages for horizontal
pagination. After this property is set, the worksheet can be scaled to fit all columns to
the pages. For more information on implementation of this property, refer
to Configure Paper Settings.

IPageSetup.FitToPagesTall This property can be used to specify the maximum number of pages for vertical
pagination. After this property is set, the worksheet can be scaled to fit all rows to the
pages. For more information on implementation of this property, refer to Configure
Paper Settings.

IPageSetup.IsPercentScale This property specifies a boolean value to control how the worksheet is scaled while
exporting to PDF. If the value is set to True, you can use the Zoom property of the

Documents for Excel, .NET Edition 428

Copyright © 2021 GrapeCity, Inc. All rights reserved.

IPageSetup interface and if the value is set to false, you can use the FitToPagesWide
and FitToPagesTall property of the IPageSetup interface. For more information on
implementation of this property, refer to Configure Paper Settings.

IWorksheet.HPageBreaks This property can be used to specify the horizontal page breaks that will split rows to
multiple pages. However, this property doesn't work when the property IsPercentScale
is set to false. For more information on implementation of this property, refer
to Configure Page Breaks.

IWorksheet.VPageBreaks This property can be used to specify the vertical page breaks that will split columns to
multiple pages. However, this property doesn't work when the property IsPercentScale
is set to false. For more information on implementation of this property, refer
to Configure Page Breaks.

For more information on setting pagination, refer to Print Settings.

Note: The Export to PDF feature doesn't support inserting double underline, superscripts and subscripts etc. while
working with page set up settings in a spreadsheet.

Support Security Options
Sometimes, users need to secure their digital documents with user/owner passwords, print permission, content
permission, annotation permission etc. PDF documents have always been the preferred format for sharing digital files
among professionals. The GcExcel library supports Security Options while saving Excel spreadsheets to PDF files. It helps in
securing a PDF Document by restricting the PDF’s access to unauthorized users as per the options specified.

With GcExcel's PdfSecurityOptions class, you can restrict access to your PDF document, while converting Excel
spreadsheet to PDF document. You can choose through the following security properties in the PdfSecurityOptions class:

Properties Description

UserPassword Gets or sets the user password of the PDF
document.

OwnerPassword Gets or sets the owner password of the PDF
document. This password is required to change
the permissions for the PDF document.

PrintPermission Gets or sets the permission to print the PDF
document. The default value is true for this
property.

FullQualityPrintPermission Gets or sets the permission to print in high
quality. The default value is true for this
property, and it only works when
PrintPermission property is set to true.

ExtractContentPermission Gets or sets the permission to copy or extract
content. The default value is true for this
property.

ModifyDocumentPermission Gets or sets the permission to modify the PDF

Documents for Excel, .NET Edition 429

Copyright © 2021 GrapeCity, Inc. All rights reserved.

document. The default value is true for this
property.

AssembleDocumentPermission Gets or sets the permission to insert, rotate or
delete pages, and create bookmarks/thumbnail
images. The default value is true for this
property. If you want to prevent a user from
inserting, rotating or deleting pages, you need
to set ModifyDocumentPermission property
to false as well.

ModifyAnnotationsPermission Gets or sets the permission to modify text
annotations and fill the form fields. The default
value is true for this property.

FillFormsPermission Gets or sets the permission to fill the form
fields even if
the ModifyAnnotationsPermission
property returns false. The default value for this
property is true. Note that if you want to
prevent a user from filling interactive form
fields, you need to set the
ModifyAnnotationsPermission property to
false.

Using Code

Refer to the following example to add security options while exporting Excel spreadsheets to PDF documents.

C#

public void SavePDFPdfSecurityOptions()
{
 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];
 // Data
 object[,] data = new object[,]{
 {"Name", "City", "Birthday", "Sex", "Weight", "Height", "Age"},
 {"Bob", "NewYork", new DateTime(1968, 6, 8), "male", 80, 180, 56},
 {"Betty", "NewYork", new DateTime(1972, 7, 3), "female", 72, 168, 45},
 {"Gary", "NewYork", new DateTime(1964, 3, 2), "male", 71, 179, 50},
 {"Hunk", "Washington", new DateTime(1972, 8, 8), "male", 80, 171, 59},
 {"Cherry", "Washington", new DateTime(1986, 2, 2), "female", 58, 161, 34},
 {"Coco", "Virginia", new DateTime(1982, 12, 12), "female", 58, 181, 45},
 {"Lance", "Chicago", new DateTime(1962, 3, 12), "female", 49, 160, 57},
 { "Eva", "Washington", new DateTime(1993, 2, 5), "female", 71, 180, 81}};
 // Set data
 worksheet.Range["A1:G9"].Value = data;

Documents for Excel, .NET Edition 430

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 //The security settings of pdf when converting excel to pdf
 PdfSecurityOptions securityOptions = new PdfSecurityOptions();
 //Sets the user password
 securityOptions.UserPassword = "user";
 //Sets the owner password
 securityOptions.OwnerPassword = "owner";
 //Printing the pdf document is not allowed
 securityOptions.PrintPermission = false;
 //Filling the form fields of the pdf document is not allowed
 securityOptions.FillFormsPermission = false;

 PdfSaveOptions pdfSaveOptions = new PdfSaveOptions();
 //Sets the security settings of the pdf
 pdfSaveOptions.SecurityOptions = securityOptions;

 // Saving workbook to PDF
 workbook.Save(@"4-SavePDFPdfSecurityOptions.pdf", pdfSaveOptions);
}

Note: GcExcel uses RC4 encryption with key from 40 to 128 bit length and allows to define additional permission
flags.

Support Document Properties
GcExcel provides support for document properties while saving Excel spreadsheets to PDF documents. The document
properties contain the basic information about a document, such as title, author, creation date, subject, creator, version
etc. You can store such useful information in the exported PDF document.

The DocumentProperties class contains the properties such as PdfVersion, EmbedStandardWindowsFonts, Title,
Author, Subject, Keywords, Creator, Producer, CreationDate and ModifyDate.

Using Code

Refer to the following example code to add document properties in the exported PDF document.

C#

DocumentProperties documentProperties = new DocumentProperties();
//Sets the name of the person that created the document
documentProperties.Author = "Will Smith";
//Sets the title of the document
documentProperties.Title = "Document properties Info Sample";
//Sets the subject of the document
documentProperties.Subject = "PDF created from GcExcel";
//Do not embed a font
documentProperties.EmbedStandardWindowsFonts = false;

PdfSaveOptions pdfSaveOptions = new PdfSaveOptions();

Documents for Excel, .NET Edition 431

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//Sets the DocumentProperties of the pdf
pdfSaveOptions.DocumentProperties = documentProperties;

Adjust Column Width and Row Height
GcExcel provides BestFitColumns and BestFitRows properties in the IPageSetup interface to properly display long or
large-size font texts in cells while printing PDF documents. These properties support SSJSON I/O and are consistent with
SpreadJS. The BestFitColumns property when set to True, resizes the column width to fit the text with the longest width
for printing. Similarly, the BestFitRows property when set to True, resizes the row height to fit the text with the tallest
height for printing.

Note: GcExcel preserves useMax property during JSON I/O. In case a file contains large amount of data, these
properties may not work as expected.

Using Code

Refer to the following example code to adjust column width or row height.

C#

// Set bestFitColumns/bestFitRows as true
worksheet.PageSetup.BestFitColumns = true;
worksheet.PageSetup.BestFitRows = true;

Export Charts
In GcExcel, you can export charts to PDF documents. This helps in the easy generation of PDF reports from spreadsheets, like finance, sales, marketing, health care etc. Following chart types can be exported to PDF documents:

Column Chart
Line Chart
Pie Chart
Bar Chart
Area Chart
XY (Scatter) Chart
Stock Chart
Radar Chart
Combo Chart

Using Code

Refer to the following example code to export charts in Excel files to PDF document.

C#

 // Initialize workbook
 Workbook workbook = new Workbook();
 // Fetch default worksheet
 IWorksheet worksheet = workbook.Worksheets[0];

 IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnStacked, 50, 120, 350, 250);
 worksheet.Range["A1:D6"].Value = new object[,]
 {
{null, "S1", "S2", "S3"},
{"Item1", 10, 25, 25},
{"Item2", -51, -36, 27},
{"Item3", 52, -85, -30},
{"Item4", 22, 65, 65},
{"Item5", 23, 69, 69}
 };
 shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

 // Saving workbook to pdf
 workbook.Save(@"ExportChartsToPDF.pdf", SaveFileFormat.Pdf);

Limitations

The following chart types are not supported and the corresponding area would appear empty when exported to PDF:

Column Chart
3D Clustered
3D Stacked

Documents for Excel, .NET Edition 432

Copyright © 2021 GrapeCity, Inc. All rights reserved.

3D 100% Stacked
3D Column

Line Chart
3D Line

Pie Chart
3D Pie
Pie of Pie
Bar of Pie

Bar Chart
3D Clustered
3D Stacked
3D 100% Stacked

Area Chart
3D Area
3D Stacked Area
3D 100% Stacked Area

Scatter Chart
3D Bubble

Map
Surface
Histogram
Pareto
Box and Whisker
Waterfall
Funnel

Supported features

The below table shows the supported features in different chart types when exported to PDF.

Common Features (Supported by all Chart Types)

Features Settings Supported

Chart Title font size Yes

font color Yes

border Yes

fill Yes

overlap with plot area No

custom angle No

text direction No

Plot Area border Yes

fill Yes

free layout(resize) Yes

Axes show/hide Yes

fill Yes

title Yes

title free layout No

border Yes

angle(text rotate) No

max/min bounds Yes (when min/max is auto, the rendered result might be different between MSExcel and GcExcel)

major/minor unit

horizontal axis cross position No

display units Yes

logrithimic scale Yes

values in reverse order Yes

tick marks Yes

label position Yes

number format Yes

Data Label fill Yes

border Yes

font Yes

position Yes

number format Yes

contains(series name/category name/values) Yes

Data Table No

Error Bars direction Yes

end style Yes

error amount Yes

Gridlines major/minor Yes

value axis Yes

category axis Yes

color Yes

Legend fill Yes

border Yes

Documents for Excel, .NET Edition 433

Copyright © 2021 GrapeCity, Inc. All rights reserved.

location(top/bottom/left/right) Yes

free layout(resize) Yes

Trend Line Yes

Series Option primary axis Yes

secondary axis Yes

series overlap Yes

gap width Yes

Line Chart

Excel Export PDF Export

The below table shows the supported features in line chart type when exported to PDF.

Features Settings Supported

Line solid color Yes

gradient color No

weight Yes

cap type No

join type No

dash type Yes

begin arrow No

end arrow No

smooth line No

Marker size Yes

fill Yes

border Yes

Drop Lines - No

High-Low Lines - No

Up-Down Bars - No

Pie Chart

Excel Export PDF Export

Documents for Excel, .NET Edition 434

Copyright © 2021 GrapeCity, Inc. All rights reserved.

The below table shows the supported features in pie chart type when exported to PDF.

Features Settings Supported

Pie Settings angle of first slice Yes

explosion No

Dought Chart doughnut hole size Yes

Bar Chart

Excel Export PDF Export

The below table shows the supported features in bar chart type when exported to PDF.

Features Settings Supported

Series Option overlap No

gap width Yes

Scatter Chart

Excel Export PDF Export

The below table shows the supported features in scatter chart type when exported to PDF.

Features Settings Supported

Chart Type scatter Yes

scatter with smooth lines and markers Yes

scatter with smooth lines Yes

scatter with straight lines and markers Yes

scatter with straight lines Yes

bubble Yes

3D-bubble No

Bubble Settings size represents No

scale bubble size No

Stock Chart

Excel Export PDF Export

Documents for Excel, .NET Edition 435

Copyright © 2021 GrapeCity, Inc. All rights reserved.

The below table shows the supported features in stock chart type when exported to PDF.

Features Settings Supported

Common Features line color Yes

stock Yes

line dash type No

line cap No

line join No

series marker No

series line No

Open-High-Low-Close gap width No

down-bar fill Yes

down-bar border No

up-bar No

Volume-High-Low-Close / Volume-Open-High-Low-Close volumn fill Yes

volume border No

Radar Chart

Excel Export PDF Export

The below table shows the supported features in radar chart type when exported to PDF.

Features Settings Supported

Chart Type radar Yes

radar with markers Yes

filled radar Yes

Series Line width Yes

color Yes

Marker type Yes

size Yes

fill Yes

border Yes

TreeMap Chart

Documents for Excel, .NET Edition 436

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Excel Export PDF Export

The below table shows the supported features in TreeMap chart type when exported to PDF.

Features Setttings Supported

Series Option banner No

overlapping No

Label Option contains(series name/category name/value) No

number fromat No

text font Yes

text color Yes

Point Formatting fill Yes

line Yes

Sunburst Chart

Excel Export PDF Export

The below table shows the supported features in Sunburst chart type when exported to PDF.

Features Settings Supported

Plot Area fill No

Label Option contains(series name/category name/value) No

number fromat No

text font Yes

text color Yes

Point Formatting fill Yes

line Yes

Export Slicers
Slicers are visual filters that are used to filter data in Excel spreadsheets. You can filter the data by clicking on desired type
of data in slicer.

GcExcel supports the export of Excel spreadsheet containing a slicer to PDF document. So, if an Excel spreadsheet
containing a slicer is exported to PDF, the resulting PDF will contain the applied slicer.

Documents for Excel, .NET Edition 437

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Using Code

Refer to the following example code to export slicers to PDF document.

C#

// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];
worksheet.Range["A:F"].ColumnWidth = 13;
// Set Data
worksheet.Range["A1:F16"].Value = sourceData;
ITable table = worksheet.Tables.Add(worksheet.Range["A1:F16"], true);
table.Columns[3].DataBodyRange.NumberFormat = "$#,##0.00";
// Create slicer cache for table
ISlicerCache cache = workbook.SlicerCaches.Add(table, "Category", "categoryCache");

// Add two slicers for Category column
ISlicer slicer1 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "cate1", "Category",
300, 50, 100, 200);

// Saving workbook to pdf
workbook.Save(@"ConvertExcelSlicersToPDFExport.pdf");

Limitations

The following is not supported while exporting slicers to PDF documents:

Pivot table slicers or report connections
Custom height of slicer items
Slicer settings
Slicer styles (except the color property)
Slicer header styles
Scroll viewer which surrounds the items panel
Slicer item styles for the "No data" visual state group

Export Barcodes
GcExcel provides support to export barcodes to PDF documents. For more information about supported barcodes and the
sample code implementation to export them to PDF documents, refer:

QRCode
EAN-13
EAN-8
Codabar
Code39
Code93
Code128
GS1-128
Code49

Documents for Excel, .NET Edition 438

Copyright © 2021 GrapeCity, Inc. All rights reserved.

PDF417
Data Matrix

Limitations

The following parameters in different barcode types have limited or no support while exporting to PDF documents, as is
elaborated in the below table:

Barcode Type Parameter PDF Export

QRcode charSet default "UTF8"

charCode Not Supported

PDF417 compact Not Supported

EAN-13 addOn
addOnLabelPosition

Not Supported

codabar checkDigit Not Supported

code39 labelWithStartAndStopCharacter

checkDigit

fullASCII

Not Supported

code93 checkDigit

fullASCII

Not Supported

Some barcode types support various font options like fontFamily, fontWeight, fontStyle etc. The following font options
have limited support as mentioned:

Font Options PDF Export

fontStyle 'normal' and 'italic'

fontTextDecoration 'normal' and 'underline'

Export Signature Lines
GcExcel supports exporting signature lines to PDF documents. The signature lines are exported as images and the
exported signature line is different depending upon the validity of certificate. This validity or invalidity is decided by
SkipCertificateValidationOnExporting property of ISignatureSet interface. Its default value is true, meaning that the
certificate will be treated as valid. However, you can set it to false to validate the certificate which requires an internet
connection.

Using Code

Refer to the following example code to export signature lines to a PDF document.

C#

Documents for Excel, .NET Edition 439

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//create a new workbook
var workbook = new Workbook();

workbook.Open("Signature.xlsx");
workbook.Signatures.SkipCertificateValidationOnExporting = false;

//save to a pdf file
workbook.Save("exportsignaturelinetopdf.pdf");

Support Sheet Background Image
GcExcel supports sheet background image which can be included while exporting the worksheet to a PDF file. This is
very useful for displaying company logos and watermarks in PDF documents.

Render Background Image

In a worksheet, you can set a background image using the BackgroundPicture property of the IWorksheet interface.

The PrintBackgroundPicture property in PdfSaveOptions class renders the background image in the center of the page
while exporting worksheet to PDF document.

Refer to the following example code to include sheet background image while exporting to PDF document.

C#

// Initialize workbook
Workbook workbook = new Workbook();
// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];
worksheet.Range["A1"].Value = "GrapeCity Documents for Excel";
worksheet.Range["A1"].Font.Size = 25;

using (FileStream pictureStream = File.Open(@"grapecity.png", FileMode.Open,
FileAccess.Read))
{
 MemoryStream pictureMemoryStream = new MemoryStream();
 pictureStream.CopyTo(pictureMemoryStream);
 byte[] picturebytes = pictureMemoryStream.ToArray();

 //Add background image of the worksheet
 worksheet.BackgroundPicture = picturebytes;
}
PdfSaveOptions pdfSaveOptions = new PdfSaveOptions();
//Print the background picture in the centre of exported pdf file
pdfSaveOptions.PrintBackgroundPicture = true;

// Saving workbook to pdf
workbook.Save(@"PrintBackgroundPicture.pdf", pdfSaveOptions);

Documents for Excel, .NET Edition 440

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Render Multiple Background Images

Multiple background images can be rendered in GcExcel using the BackgroundPictures property of the IWorksheet
interface. These images can be included while exporting the worksheet to PDF documents. The background images in
PDF are drawn based on the gridlines and can be positioned anywhere in the document by specifying the coordinates of
the destination rectangle.

Further, the image transparency, border, corner radius and other formatting options can also be applied. For setting the
corner radius, the minimum value is 0 and the maximum value is the height or width (whichever is smaller) of the
destination rectangle divided by two. The ImageLayout enum can be used to specify the way the image should be placed
to fill the destination rectangle in PDF.

GcExcel also supports JSON export of background mages by using ToJSON method. However, the image is
discarded when exported to Excel.

Refer to the following example code to include multiple background images while exporting to PDF document.

C#

Workbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];

//Add two background pictures in the worksheet
IBackgroundPicture picture1 = worksheet.BackgroundPictures.AddPictureInPixel("logo.png",
100, 100, 350, 250);
IBackgroundPicture picture2 =
worksheet.BackgroundPictures.AddPictureInPixel("watermark.png", 180, 10, 150, 100);

//Set the border style of the destination rectangle
picture1.Line.Color.RGB = Color.Red;
picture1.Line.Weight = 1;

//The background picture will be resized to fill the destination dimensions.The aspect
ratio is not preserved.
picture1.BackgroundImageLayout = ImageLayout.Tile;
//Sets the rounded corner of the destination rectangle
picture1.CornerRadius = 50;
//Sets the transparency of the background pictures
picture1.Transparency = 0.5;
picture2.Transparency = 0.5;

//Save to PDF file
workbook.Save("ExportBackgroundImageToPDF.pdf");

Limitation

GcExcel uses the first background image found from the first worksheet to last worksheet while exporting to JSON.

For more information about adding a background image to a worksheet, refer the Customize Worksheets topic.

Documents for Excel, .NET Edition 441

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Support Background Color Transparency
When backcolor is applied on a cell or range, any background image or data gets hidden behind it while exporting to PDF.

GcExcel allows you to make the cell's backcolor transparent when exported to PDF by using the PrintTransparentCell
property of the PdfSaveOptions class. The default value of this property is false. When set to true, it prints the
transparency of the cell's background color which makes any background image or data visible.

Refer to the following example code to make cell's backcolor transparent to view the background image in PDF
document.

C#

// Initialize workbook
Workbook workbook = new Workbook();

// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

// Set the background color of range ["A1:K20"]
worksheet.Range["A1:K20"].Interior.Color = System.Drawing.Color.FromArgb(50, 255, 0, 0);

// Add a background picture
IBackgroundPicture picture = worksheet.BackgroundPictures.AddPictureInPixel("image.png",
0, 0, 300, 200);

// Set the transparency of cell's background color, so the background picture will come
out to the front
PdfSaveOptions pdfSaveOptions = new PdfSaveOptions();
pdfSaveOptions.PrintTransparentCell = true;

// Save to pdf file
workbook.Save("PrintTransparentCell.pdf", pdfSaveOptions);

Control Image Quality
GcExcel enables users to control the quality of images while exporting them to PDF documents. The ImageQuality
property of PdfSaveOptions class can be used for the same. The property takes percentage values and its default value is
75. However, it can vary between 0 to 100, depicting the below behavior:

Value Image Quality Image Compression

0 Lowest Maximum

100 Highest Nil

Documents for Excel, .NET Edition 442

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Using Code

Refer to the following example code to export an image to PDF with highest image quality.

C#

// Initialize workbook
Workbook workbook = new Workbook();
// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

//Add a picture
worksheet.Shapes.AddPictureInPixel("Logo.png", 0, 0, 639, 578);

//Create PdfSaveOptions
PdfSaveOptions pdfSaveOptions = new PdfSaveOptions();

//Set image quality as 100 % (highest quality)
pdfSaveOptions.ImageQuality = 100;

//Save to pdf with PdfSaveOptions
workbook.Save("LogoInPDF.pdf", pdfSaveOptions);

Track Export Progress
GcExcel provides PagePrinting and PagePrinted events in PdfSaveOptions class to track the export progress of a
workbook to PDF. The PagePrinting event occurs before printing a page and provides SkipThisPage property to skip
pages while exporting. Similarly, the PagePrinted event occurs after printing a page and provides HasMorePages
property to exit PDF exporting.

Display Export Progress

Refer to the following example code to display the export progress of a workbook to PDF.

C#

//create a pdf file stream
FileStream outputStream = new FileStream("pageprinteventstrackprogress.pdf",
FileMode.Create);

//create a new workbook
var workbook = new Workbook();

var activeSheet = workbook.ActiveSheet;
activeSheet.Range["A1"].Value = 1;
activeSheet.Range["A2:A100"].FormulaR1C1 = "=R[-1]C+1";
var options = new PdfSaveOptions();
options.PagePrinting += (sender, e) =>

Documents for Excel, .NET Edition 443

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Console.WriteLine($"Printing page {e.PageNumber} of {e.PageCount}");
activeSheet.PageSetup.CenterHeader = "Page &P of &N";
workbook.Save(outputStream, options);

//close the pdf stream
outputStream.Close();

Skip a Page while Exporting

Refer to the following example code to skip second page while exporting a workbook to PDF.

C#

//create a pdf file stream
FileStream outputStream = new FileStream("pageprinteventsskippage.pdf",
FileMode.Create);

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

var activeSheet = workbook.ActiveSheet;
activeSheet.Range["A1"].Value = 1;
activeSheet.Range["A2:A100"].FormulaR1C1 = "=R[-1]C+1";
var options = new PdfSaveOptions();

//skip second page
options.PagePrinting += (sender, e) =>
{
 if (e.PageNumber == 2)
 {
 e.SkipThisPage = true;
 }
};
activeSheet.PageSetup.CenterHeader = "Page &P of &N";
workbook.Save(outputStream, options);

//close the pdf stream
outputStream.Close();

Exit Exporting

Refer to the following example code to exit PDF exporting after second page.

C#

//create a pdf file stream
FileStream outputStream = new FileStream("pageprinteventsexitprinting.pdf",
FileMode.Create);

Documents for Excel, .NET Edition 444

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

var activeSheet = workbook.ActiveSheet;
activeSheet.Range["A1"].Value = 1;
activeSheet.Range["A2:A100"].FormulaR1C1 = "=R[-1]C+1";
var options = new PdfSaveOptions();

//exit printing after second page
options.PagePrinted += (sender, e) =>
{
 if (e.PageNumber == 2)
 {
 e.HasMorePages = false;
 }
};
activeSheet.PageSetup.CenterHeader = "Page &P of &N";
workbook.Save(outputStream, options);

//close the pdf stream
outputStream.Close();

Export to HTML
Many organizations maintain their product inventories, hiring positions, price lists etc. in Excel files. However, it is very
convenient to publish such data on websites to share it with relevant customers. Hence, exporting to HTML files becomes
an important feature in such cases.

GcExcel allows users to export a workbook, worksheet or any specific range to an HTML file. By default, it exports an HTML
file and a folder containing additional files. These additional files can be images in a worksheet, htm files of other
worksheets in a workbook or css file used for styling the html files. However, a single HTML file can also be exported while
exporting a worksheet or any range of a worksheet.

With various properties in HtmlSaveOptions class, the exported content can be controlled in various ways like exporting
headings, gridlines, document properties or apply other settings like scalable width, page title, displaying tooltip text etc.

The ExportCssSeparately property in HtmlSaveOptions class exports the css file separately (in the additional folder), as
its default value is true. However, it can be set to false so that the css style data is exported directly to each worksheet and
separate css file is not created.

Note: If unlicensed version of GcExcel is used:

While exporting a workbook to HTML: An "Evaluation warning" sheet is appended to the workbook along with
an "Evaluation warning" message at the head of each worksheet.
While exporting a worksheet or range to HTML: An "Evaluation warning" message is added at the head of
worksheet or range file.

Export workbook to HTML

Documents for Excel, .NET Edition 445

Copyright © 2021 GrapeCity, Inc. All rights reserved.

The Save method of IWorkbook interface can be used to export a workbook to HTML file.

Refer to the following example code to export workbook to a zip folder containing workbook's HTML file and folder
carrying additional files.

C#

//create a zip file stream
FileStream outputStream = new FileStream("saveworkbooktohtml.zip", FileMode.Create);

//create a new workbook
var workbook = new Workbook();

workbook.Open("pricelist.xlsx");

//save workbook to html format
workbook.Save(outputStream, SaveFileFormat.Html);

//close the zip stream
outputStream.Close();

Export worksheet to HTML

The Save method of IWorkbook interface can be used to export a worksheet to HTML file. The headings and gridlines of
the worksheet can also be exported by using ExportHeadings and ExportGridlines properties of HtmlSaveOptions
class. The ExportSheetName property can be used to define which worksheet needs to be exported.

Refer to the following example code to export worksheet to a zip folder containing worksheet's HTML file and a folder
carrying additional files.

C#

//create a zip file stream
FileStream outputStream = new FileStream("saveworksheettohtml.zip", FileMode.Create);

//create a new workbook
var workbook = new Workbook();

workbook.Open("hiringpositions.xlsx");

HtmlSaveOptions options = new HtmlSaveOptions();

//set exporting row/column headings
options.ExportHeadings = true;

//set exporting gridlines
options.ExportGridlines = true;

//export first sheet
options.ExportSheetName = workbook.Worksheets[0].Name;

Documents for Excel, .NET Edition 446

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//set exported html file name
options.ExportFileName = "hiringdetails";

workbook.Save(outputStream, options);

//close the zip stream
outputStream.Close();

A worksheet can also be exported to a single HTML file when the specific properties of HtmlSaveOptions class are set, as
in the code below.

C#

Workbook workbook = new Workbook();

//open an xlsx file
workbook.Open("productlist.xlsx");

IWorksheet worksheet = workbook.Worksheets[0];

//create HtmlSaveOptions
HtmlSaveOptions options = new HtmlSaveOptions();

//export first sheet
options.ExportSheetName = workbook.Worksheets[0].Name;

//set exported image as base64
options.ExportImageAsBase64 = true;

//set exported css style in html file
options.ExportCssSeparately = false;

//set not to export single tab in html
options.ExportSingleTab = false;

//save first worksheet to html
workbook.Save("saveworksheettosinglehtml.html", options);

Export worksheet range to HTML

The Save method of IWorkbook interface can be used to export any range of a worksheet to HTML file. The ExportArea
property of HtmlSaveOptions class can be used to define the range which needs to be exported.

Refer to the following example code to export range in a worksheet to a zip folder containing range's HTML file and a
folder carrying additional files.

C#

Documents for Excel, .NET Edition 447

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//create a zip file stream
FileStream outputStream = new FileStream("saverangetohtml.zip", FileMode.Create);

//create a new workbook
var workbook = new Workbook();

workbook.Open("projecttracker.xlsx");

HtmlSaveOptions options = new HtmlSaveOptions();

//export first sheet
options.ExportSheetName = workbook.Worksheets[0].Name;

//set export area
options.ExportArea = "D2:G23";

//set exported html file name
options.ExportFileName = "range";

//set html with scalable width
options.IsWidthScalable = true;

workbook.Save(outputStream, options);

//close the zip stream
outputStream.Close();

A range in a worksheet can also be exported to a single HTML file when the specific properties of HtmlSaveOptions class
are set, as in the code below.

C#

Workbook workbook = new Workbook();

//open an xlsx file
workbook.Open("netprofit.xlsx");
IWorksheet worksheet = workbook.Worksheets[0];

//create HtmlSaveOptions
HtmlSaveOptions options = new HtmlSaveOptions();

//specify exported sheet name
options.ExportSheetName = workbook.Worksheets[0].Name;

//set export area
options.ExportArea = "D2:G23";

Documents for Excel, .NET Edition 448

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//set exported image as base64
options.ExportImageAsBase64 = true;

//set exported css style in html file
options.ExportCssSeparately = false;

//set not to export single tab in html
options.ExportSingleTab = false;

//save the specified range of first worksheet to html
workbook.Save("range.html", options);

Limitations

The following features are not supported while exporting to html file:

Vertical text
Picture's texture or picture fill
Pictures's brightness or contrast
Shape with gradient line
Shape with rectangular gradient fill and path gradient fill
Text alignment in shape-like distribution
Font: Alignment preferences like Center across selection, Fill alignment, Orientation, Text reading order etc.
Shrink to fit
Chart

The following chart types are not supported: 3D, Pie of Pie, Bar of Pie, Combo chart with Pie or Doughnut or
Radar, Map, Treemap, Sunburst, Histogram, Box & Whisker, Waterfall and Funnel.
The chart layout, major unit and min or max value of the chart axis may not be exactly same as Excel after
exporting to HTML file.
The following chart features are not supported:

Line marker and round corners
Chart elements: Stock's upBar, data table and label callout
Fill settings: Gradient, Picture or Texture and Pattern

Slicer
Pivot table slicers or report connections
Custom height of slicer items
Slicer settings
Slicer styles (except the color property)
Slicer header styles
Scroll viewer which surrounds the items panel
Slicer item styles for "No data" visual state groups

Import and Export CSV File
This section summarizes how GcExcel .NET handles the spreadsheet documents(.csv files).

While importing and exporting a workbook in order to open and save a csv file or stream, you can use the following

Documents for Excel, .NET Edition 449

Copyright © 2021 GrapeCity, Inc. All rights reserved.

properties and methods of the CsvOpenOptions class and the CsvSaveOptions class in order to configure several open
and save options in a workbook.

Settings Description

CsvOpenOptions.ConvertNumericData This property can be used to get or set a value that indicates
whether the string in text file is converted to numeric data.

CsvOpenOptions.ConvertDateTimeData This property can be used to get or set a value that indicates
whether the string in text file is converted to date data.

CsvOpenOptions.SeparatorString This property can be used to get or set the string value as a
separator.

CsvOpenOptions.Encoding This property can be used to get or set the default encoding
which is UTF-8.

CsvOpenOptions.ParseStyle This property can be used to specify whether the style for
parsed values should be applied while converting the string
values to number or date time.

CsvOpenOptions.HasFormula This property can be used to specify whether the text is formula
if it starts with "=".

CsvSaveOptions.SeparatorString This property can be used to get or set the string value as the
separator. By default, this value is a comma separator.

CsvSaveOptions.Encoding This property can be used to specify the default encoding which
is UTF-8.

CsvSaveOptions.ValueQuoteType This property can be used to get or set how to quote values in
the exported text file.

CsvSaveOptions.TrimLeadingBlankRowAndColumn This property can be used to specify whether the leading blank
rows and columns should be trimmed like in Excel.

Refer to the following example code in order to import a .csv file.

C#

IWorkbook workbook = new Workbook();

//Method1 - Opening a csv file
workbook.Open(@"test.csv", OpenFileFormat.Csv);

//Method2 - Opening a csv file using several open options
CsvOpenOptions options = new CsvOpenOptions();
options.ConvertNumericData = false;
options.ParseStyle = false;
workbook.Open(@"test.csv", options);

Refer to the following example code in order to export a .csv file from a workbook or a particular worksheet in the
workbook.

Documents for Excel, .NET Edition 450

Copyright © 2021 GrapeCity, Inc. All rights reserved.

C#

 // Save a csv file from workbook

 IWorkbook workbook1 = new Workbook();

 // Saving to a csv file
 workbook1.Save(@"test.csv", SaveFileFormat.Csv);

 // Saving to a csv file with advanced settings
 CsvSaveOptions options1 = new CsvSaveOptions();
 options1.SeparatorString = "-";
 options1.ValueQuoteType = ValueQuoteType.Always;
 workbook1.Save(@"test.csv", options1);

// Save a csv file from worksheet

 IWorkbook workbook2 = new Workbook();
 IWorksheet worksheet = workbook2.Worksheets[0];

 // Saving to a csv file
 worksheet.Save(@"test.csv", SaveFileFormat.Csv);

 // Saving to a csv file with advanced settings
 CsvSaveOptions options2 = new CsvSaveOptions();
 options2.SeparatorString = "-";
 options2.ValueQuoteType = ValueQuoteType.Always;
 worksheet.Save(@"test.csv", options2);

Import and Export CSV File with Delimiters
GcExcel .NET allows users to open and save CSV files with custom delimiters for rows, cells and columns. You can use any
custom character of your choice as a delimiter. For instance - Comma (,) , Semicolon (;) , Quotes (", ') , Braces ((), {}),
pipes (|), slashes (/ \), Carat (^), Pipe (|), Tab (\t) etc.

Users can import and export the following three types of custom delimiters in CSV files as per their custom requirements
and preferences. All these types of delimiters work independently and cannot be combined with each other.

1. Column Delimiters - These are the delimiters that separate the columns of a worksheet. By default, a column
delimiter is of string type. Users can get or set the column delimiters using the options in the table shared below.

Settings Description

CsvOpenOptions.ColumnSeparator This property can be used to get or set the column delimiter while
opening CSV files.

CsvSaveOptions.ColumnSeparator This property can be used to get or set the column delimiter while saving
CSV files.

Documents for Excel, .NET Edition 451

Copyright © 2021 GrapeCity, Inc. All rights reserved.

2. Row Delimiters - These are the delimiters that separate the rows of a worksheet. By default, a row delimiter is of
string type. Users can get or set the row delimiters using the options in the table shared below.

Settings Description

CsvOpenOptions.RowSeparator This property can be used to get or set the row delimiter while opening
CSV files.

CsvSaveOptions.RowSeparator This property can be used to get or set the row delimiter while saving
CSV files.

3. Cell Delimiters - These are the delimiters that separate the cells of a worksheet. By default, the cell delimiter is of
char type. Users can get or set the cell delimiters using the options in the table shared below.

Settings Description

CsvOpenOptions.CellSeparator This property can be used to get or set the cell delimiter while opening
CSV files.

CsvSaveOptions.CellSeparator This property can be used to get or set the cell delimiter while saving
CSV files.

Using Code

Refer to the following example code in order to import and export CSV files with delimiters using CsvOpenOptions class.

C#

// Initialize workbook
Workbook workbook = new Workbook();

// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

// Setting ColumnSeparator, RowSeparator & CellOperator in Open CSV options
var openOption = new CsvOpenOptions();
openOption.ColumnSeparator = ",";
openOption.RowSeparator = "\r\n";
openOption.CellSeparator = '"';

// Opening CSV in workbook
workbook.Open(@"test.csv", openOption);

// Saving workbook to CSV
workbook.Save(@"4-OpenCSVDelimeterRowColumnCell.csv");

Refer to the following example code in order to import and export CSV files with delimiters using CsvSaveOptions class.

C#

Documents for Excel, .NET Edition 452

Copyright © 2021 GrapeCity, Inc. All rights reserved.

// Initialize workbook
Workbook workbook = new Workbook();

// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

object[,] data = new object[,]{
 {"Name", "City", "Birthday", "Sex", "Weight", "Height"},
 {"Bob", "NewYork", new DateTime(1968, 6, 8), "male", 80, 180},
 {"Betty", "NewYork", new DateTime(1972, 7, 3), "female", 72, 168},
 {"Gary", "NewYork", new DateTime(1964, 3, 2), "male", 71, 179},
 {"Hunk", "Washington", new DateTime(1972, 8, 8), "male", 80, 171},
 {"Cherry", "Washington", new DateTime(1986, 2, 2), "female", 58, 161},
 { "Eva", "Washington", new DateTime(1993, 2, 5), "female", 71, 180}};

// Set data
worksheet.Range["A1:F5"].Value = data;
worksheet.Range["A:F"].ColumnWidth = 20;

// Setting ColumnSeparator/ RowSeparator & CellOperator in Save CSV options
var saveOption = new CsvSaveOptions();
saveOption.ColumnSeparator = ",";
saveOption.RowSeparator = "\r\n";
saveOption.CellSeparator = '"';

// Saving workbook to CSV
workbook.Save(@"SaveCSVDelimiterRowColumnCell.csv", saveOption);

Import and Export JSON Stream
GcExcel .NET supports the import and export of a json stream using .NET core.

Import and Export JSON Stream for Workbook

You can export a workbook to a json string/stream using the ToJson method of the IWorkbook interface. You can also
import a json string or stream to your workbook using the FromJson method of the IWorkbook interface.

Refer to the following example code to import and export json stream.

C#

//ToJson&FromJson can be used in combination with spreadjs product

//GcExcel import an excel file.
//change the path to real source file path.
string source = "savingfile.xlsx";
workbook.Open(source);

Documents for Excel, .NET Edition 453

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//GcExcel export to a json string.
var jsonstr = workbook.ToJson();
//use the json string to initialize spreadjs product.
//spreadjs will show the excel file contents.

//spreadjs product export a json string.
//GcExcel use the json string to initialize.
workbook.FromJson(jsonstr);
//GcExcel export workbook to an excel file.
//change the path to real export file path.

string export = "export.xlsx";
workbook.Save(export);

Import and Export JSON String for Worksheet

You can export the information in a worksheet to a json string using the ToJson method of the IWorksheet interface.
Similarly, you can also import a json string to your worksheet using the FromJson of the IWorksheet interface. The
worksheet can also be exported or imported to the same or another workbook.

It also enables you to view a large Excel file in SpreadJS. The Excel file can be opened in GcExcel and the json string of a
worksheet can be exported using the ToJson method. Further, the json string of the worksheet can be transfered
to client to be loaded in SpreadJS.

Limitations

Importing worksheet json to another workbook on server might cause data loss or conflict
Cell styles used in SpreadJS ssjson are lost in Excel after using Worksheet.toJSON()
SpreadJS doesn't support all the page settings of Excel. Hence, GcExcel does not get all the settings when imported
from ssjson.

Refer to the following example code to export and import json string of a worksheet.

C#

var workbook = new GrapeCity.Documents.Excel.Workbook();

//ToJson&FromJson can be used in combination with spreadjs
product:http://spread.grapecity.com/spreadjs/sheets/

//GrapeCity Documents for Excel import an excel file
string source = "ExcelJsonInput.xlsx";
workbook.Open(source);

//Open the file
GrapeCity.Documents.Excel.Workbook new_workbook = new
GrapeCity.Documents.Excel.Workbook();
new_workbook.Open(source);

foreach (IWorksheet worksheet in workbook.Worksheets)

Documents for Excel, .NET Edition 454

Copyright © 2021 GrapeCity, Inc. All rights reserved.

{
 worksheet.Range["D40:F40"].Value = new string[] { "Device", "Quantity", "Unit Price"
};
 worksheet.Range["D41:F44"].Value = new object[,]
 { { "T540p", 12, 9850 },
 { "T570", 5, 7460 },
 { "Y460", 6, 5400 },
 { "Y460F", 8, 6240 } };

 //GrapeCity Documents for Excel export a worksheet to json string
 string json = worksheet.ToJson();

 //You can use the json string to initialize spreadjs product
 //Product spreadjs will show the excel file contents
 //You can use spreadjs product export a json string of worksheet

 //GrapeCity Documents for Excel use the json string to update content of the
corresponding worksheet
 new_workbook.Worksheets[worksheet.Name].FromJson(json);
}

//GrapeCity Documents for Excel export workbook to an excel file
string export = "ExcelJsonOutput.xlsx";
new_workbook.Save(export);

Retreive Errors while Importing JSON Files

GcExcel provides the option to get JSON errors, if any, while importing the JSON file using FromJson method of
IWorkbook interface. The error message is displayed by the ErrorMessage property of JsonError class. Two types of
error messages are supported:

Formula JSON Error - Implemented using the FormulaJsonError class and can be raised in case of a formula error
in JSON file
Data Validation JSON Error - Implemented using the DataValidationJsonError class and can be raised in case of a
data validation error in JSON file

Refer to the below example code which will display a formula JSON error as the JSON file containing formula error is
imported in GcExcel.

C#

Workbook workbook = new Workbook();
IList<JsonError> errors = workbook.FromJson(File.OpenRead("ErrorJson.json"));
foreach (JsonError item in errors)
{
 if (item is FormulaJsonError)
 {
 FormulaJsonError fError = item as FormulaJsonError;
 Console.WriteLine(fError.ErrorMessage + " " +

Documents for Excel, .NET Edition 455

Copyright © 2021 GrapeCity, Inc. All rights reserved.

workbook.Worksheets[fError.WorksheetName].Range[fError.Row, fError.Column].ToString() +
" " + fError.Formula);
 }
 if (item is DataValidationJsonError)
 {
 DataValidationJsonError dError = item as DataValidationJsonError;
 Console.WriteLine(dError.ErrorMessage + " " +
workbook.Worksheets[dError.WorksheetName].Range[dError.Range.ToString()] + " " +
dError.ErrorContent);
 }
}

Limitation

If the data validation in JSON file has error in its formula, Data Validation JSON error will be generated.
Import and Export from JSON stringGcExcel allows you to import and export below features from or to a json string.Shape, Chart or PictureRefer to the following example code which uses IShape.FromJson method to update a shape, chart and picture from json string.C#var workbook = new GrapeCity.Documents.Excel.Workbook();IWorksheet worksheet = workbook.Worksheets[0];worksheet.Range["A1:D6"].Value = new object[,]{{null, "S1", "S2", "S3"},{"Item1", 10, 25, 25},{"Item2", -51, -36, 27},{"Item3", 52, -85, -30},{"Item4", 22, 65, 65},{"Item5", 23, 69, 69}}; var shape = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 10, 10, 100, 100);//update shape from jsonshape.FromJson("{\"isLocked\":true,\"canPrint\":true,\"dynamicMove\":true,\"dynamicSize\":true,\"allowResize\":true,\"allowRotate\":true,\"allowMove\":true,\"showHandle\":true,\"alt\":\"\",\"formulaItems\":{\"line\":{\"color\":\"rgb(31,79,122)\",\"lineStyle\":0,\"width\":1,\"capType\":2,\"joinType\":0,\"transparency\":0}},\"shapeData\":{\"anchorType\":0,\"startPoint\":{\"row\":1,\"col\":0,\"rowOffset\":11,\"colOffset\":38},\"endPoint\":{\"row\":8,\"col\":4,\"rowOffset\":2,\"colOffset\":27},\"editAs\":0,\"sp\":{\"shapeType\":5,\"nvSpPr\":{\"cNvPr\":{\"id\":2,\"name\":\"rightArrowCallout 1\",\"hidden\":false,\"title\":\"\"},\"cNvSpPr\":{\"txBox\":false}},\"spPr\":{\"xfrm\":{\"flipH\":false,\"flipV\":false,\"rot\":0,\"off\":{\"x\":38,\"y\":31},\"ext\":{\"cx\":237,\"cy\":131}},\"prstGeom\":{\"prst\":56,\"avLst\":{}},\"extLst\":{\"ext\":[]},\"solidFill\":{\"schemeClr\":{\"val\":9,\"lumMod\":[60000],\"lumOff\":[40000]}},\"ln\":{\"solidFill\":{\"srgbClr\":{\"val\":[31,79,122]}},\"w\":1,\"prstDash\":0,\"cap\":2,\"round\":true},\"effectLst\":{}},\"style\":{\"fillRef\":{\"ColorProp\":{\"colorFillType\":0,\"schemeClr\":{\"val\":-4142}},\"idx\":1},\"lnRef\":{\"ColorProp\":{\"colorFillType\":0,\"schemeClr\":{\"val\":-4142}},\"idx\":2},\"fontRef\":{\"TextCharacterProperties\":{\"latin\":{\"typeface\":\"+mn-lt\"},\"sz\":14.666666666666666,\"solidFill\":{\"srgbClr\":{\"val\":[255,255,255]}}},\"idx\":1},\"effectRef\":{\"idx\":0,\"ColorProp\":{\"colorFillType\":0,\"schemeClr\":{\"val\":4}}}},\"txBody\":{\"p\":[{\"elements\":[{\"elementType\":0,\"t\":\"\",\"rPr\":{\"latin\":{\"typeface\":\"Calibri\"},\"sz\":14.6667,\"b\":false,\"i\":false,\"solidFill\":{\"srgbClr\":{\"val\":[255,255,255]}}}}],\"pPr\":{\"defRPr\":{\"latin\":{\"typeface\":\"Calibri\"},\"sz\":14.6667,\"b\":false,\"i\":false,\"solidFill\":{\"srgbClr\":{\"val\":[255,255,255]}}},\"algn\":0},\"endParaRPr\":{}}],\"bodyPr\":{\"anchor\":0,\"horzOverflow\":1,\"vertOverflow\":2},\"lstStyle\":{}}}},\"name\":\"rightArrowCallout 1\",\"shapeType\":5}"); var chart = worksheet.Shapes.AddChart(ChartType.Line, 10, 10, 300, 300);//update chart from jsonchart.FromJson("{\"name\":\"Chart 1\",\"x\":145,\"y\":133,\"width\":480,\"height\":300,\"startRow\":6,\"startRowOffset\":13,\"startColumn\":2,\"startColumnOffset\":21,\"endRow\":21,\"endRowOffset\":13,\"endColumn\":10,\"endColumnOffset\":5,\"isSelected\":true,\"typeName\":\"2\",\"chartSpace\":{\"typeName\":\"chartSpace\",\"roundedCorners\":false,\"chart\":{\"title\":{\"txPr\":{\"p\":[{\"elements\":[{\"elementType\":0,\"t\":\"\",\"rPr\":{\"latin\":{\"typeface\":\"+mn-lt\"},\"sz\":18.67,\"b\":false,\"solidFill\":{\"schemeClr\":{\"val\":1,\"lumMod\":[65000],\"lumOff\":[35000]}}}}],\"pPr\":{\"defRPr\":{\"latin\":{\"typeface\":\"+mn-lt\"},\"sz\":18.67,\"b\":false,\"solidFill\":{\"schemeClr\":{\"val\":1,\"lumMod\":[65000],\"lumOff\":[35000]}}}},\"endParaRPr\":{}}],\"bodyPr\":{},\"lstStyle\":{}},\"overlay\":false,\"spPr\":{\"noFill\":true,\"ln\":{\"noFill\":true},\"effectLst\":{}}},\"autoTitleDeleted\":false,\"plotArea\":{\"axes\":[{\"axisType\":0,\"axId\":31410946,\"delete\":false,\"majorTickMark\":2,\"minorTickMark\":2,\"tickLblPos\":2,\"axPos\":0,\"scaling\":{\"orientation\":1},\"spPr\":{\"ln\":{\"solidFill\":{\"schemeClr\":{\"val\":1,\"lumMod\":[15000],\"lumOff\":[85000]}}}},\"numFmt\":{\"formatCode\":\"General\"},\"txPr\":{\"p\":[{\"elements\":[{\"elementType\":0,\"t\":\"\",\"rPr\":{\"latin\":{\"typeface\":\"+mn-lt\"},\"sz\":12,\"b\":false,\"solidFill\":{\"schemeClr\":{\"val\":1,\"lumMod\":[65000],\"lumOff\":[35000]}}}}],\"pPr\":{\"defRPr\":{\"latin\":{\"typeface\":\"+mn-lt\"},\"sz\":12,\"b\":false,\"solidFill\":{\"schemeClr\":{\"val\":1,\"lumMod\":[65000],\"lumOff\":[35000]}}}},\"endParaRPr\":{}}]},\"auto\":true,\"lblOffset\":0,\"tickMarkSkip\":1,\"noMultiLvlLbl\":true,\"AxisGroup\":0,\"AxisType\":0,\"crosses\":1,\"crossAx\":38384719},{\"axisType\":3,\"axId\":38384719,\"delete\":false,\"majorTickMark\":2,\"minorTickMark\":2,\"tickLblPos\":2,\"axPos\":1,\"scaling\":{\"orientation\":1},\"spPr\":{\"ln\":{\"solidFill\":{\"schemeClr\":{\"val\":1,\"lumMod\":[15000],\"lumOff\":[85000]}}}},\"numFmt\":{\"formatCode\":\"General\"},\"txPr\":{\"p\":[{\"elements\":[{\"elementType\":0,\"t\":\"\",\"rPr\":{\"latin\":{\"typeface\":\"+mn-lt\"},\"sz\":12,\"b\":false,\"solidFill\":{\"schemeClr\":{\"val\":1,\"lumMod\":[65000],\"lumOff\":[35000]}}}}],\"pPr\":{\"defRPr\":{\"latin\":{\"typeface\":\"+mn-lt\"},\"sz\":12,\"b\":false,\"solidFill\":{\"schemeClr\":{\"val\":1,\"lumMod\":[65000],\"lumOff\":[35000]}}}},\"endParaRPr\":{}}]},\"majorGridlines\":{\"spPr\":{\"ln\":{\"solidFill\":{\"srgbClr\":{\"val\":[217,217,217]}},\"w\":1},\"effectLst\":{}}},\"AxisGroup\":0,\"AxisType\":1,\"crosses\":1,\"crossBetween\":0,\"crossAx\":31410946}],\"chartGroups\":[{\"chartType\":6,\"ser\":[{\"seriesType\":0,\"idx\":0,\"order\":0,\"tx\":{\"strRef\":{\"f\":\"Sheet1!A2\"}},\"cat\":{\"strRef\":{\"f\":\"Sheet1!B1:D1\"}},\"val\":{\"numRef\":{\"f\":\"Sheet1!B2:D2\",\"numCache\":{\"formatCode\":\"General\"}}},\"shape\":2,\"invertIfNegative\":false},{\"seriesType\":0,\"idx\":1,\"order\":1,\"tx\":{\"strRef\":{\"f\":\"Sheet1!A3\"}},\"cat\":{\"strRef\":{\"f\":\"Sheet1!B1:D1\"}},\"val\":{\"numRef\":{\"f\":\"Sheet1!B3:D3\",\"numCache\":{\"formatCode\":\"General\"}}},\"shape\":2,\"invertIfNegative\":false},{\"seriesType\":0,\"idx\":2,\"order\":2,\"tx\":{\"strRef\":{\"f\":\"Sheet1!A4\"}},\"cat\":{\"strRef\":{\"f\":\"Sheet1!B1:D1\"}},\"val\":{\"numRef\":{\"f\":\"Sheet1!B4:D4\",\"numCache\":{\"formatCode\":\"General\"}}},\"shape\":2,\"invertIfNegative\":false},{\"seriesType\":0,\"idx\":3,\"order\":3,\"tx\":{\"strRef\":{\"f\":\"Sheet1!A5\"}},\"cat\":{\"strRef\":{\"f\":\"Sheet1!B1:D1\"}},\"val\":{\"numRef\":{\"f\":\"Sheet1!B5:D5\",\"numCache\":{\"formatCode\":\"General\"}}},\"shape\":2,\"invertIfNegative\":false},{\"seriesType\":0,\"idx\":4,\"order\":4,\"tx\":{\"strRef\":{\"f\":\"Sheet1!A6\"}},\"cat\":{\"strRef\":{\"f\":\"Sheet1!B1:D1\"}},\"val\":{\"numRef\":{\"f\":\"Sheet1!B6:D6\",\"numCache\":{\"formatCode\":\"General\"}}},\"shape\":2,\"invertIfNegative\":false}],\"axId\":[31410946,38384719],\"barDir\":1,\"grouping\":1,\"gapWidth\":150,\"varyColors\":false,\"overlap\":-27}],\"spPr\":{\"noFill\":true,\"ln\":{\"noFill\":true}}},\"legend\":{\"legendPos\":4,\"spPr\":{\"noFill\":true,\"ln\":{\"noFill\":true}},\"txPr\":{\"p\":[{\"elements\":[{\"elementType\":0,\"t\":\"\",\"rPr\":{\"latin\":{\"typeface\":\"+mn-lt\"},\"sz\":12,\"b\":false,\"solidFill\":{\"schemeClr\":{\"val\":1,\"lumMod\":[65000],\"lumOff\":[35000]}}}}],\"pPr\":{\"defRPr\":{\"latin\":{\"typeface\":\"+mn-lt\"},\"sz\":12,\"b\":false,\"solidFill\":{\"schemeClr\":{\"val\":1,\"lumMod\":[65000],\"lumOff\":[35000]}}}},\"endParaRPr\":{}}]}},\"plotVisOnly\":true,\"dispBlanksAs\":1,\"dispNaAsBlank\":false},\"spPr\":{\"solidFill\":{\"schemeClr\":{\"val\":0}},\"ln\":{\"solidFill\":{\"schemeClr\":{\"val\":1,\"lumMod\":[15000],\"lumOff\":[85000]}},\"w\":1}},\"txPr\":{\"p\":[{\"elements\":[{\"elementType\":0,\"t\":\"\",\"rPr\":{\"latin\":{\"typeface\":\"+mn-lt\"},\"b\":false,\"solidFill\":{\"schemeClr\":{\"val\":1,\"lumMod\":[65000],\"lumOff\":[35000]}}}}],\"pPr\":{\"defRPr\":{\"latin\":{\"typeface\":\"+mn-lt\"},\"b\":false,\"solidFill\":{\"schemeClr\":{\"val\":1,\"lumMod\":[65000],\"lumOff\":[35000]}}}},\"endParaRPr\":{}}]}},\"useAnimation\":false}"); var picture = worksheet.Shapes.AddPicture(null, 0, 0, 100, 100);//update picture from
jsonpicture.FromJson("{\"name\":\"Picture1\",\"x\":350,\"y\":10,\"width\":478,\"height\":113,\"startRow\":0,\"startRowOffset\":10,\"startColumn\":5,\"startColumnOffset\":40,\"endRow\":6,\"endRowOffset\":3,\"endColumn\":13,\"endColumnOffset\":22,\"isSelected\":true,\"typeName\":\"1\",\"src\":\"
ZF/zKAbfmtNFfatR7nEokhAHFDBbzlZQX2FwA/JfwZVg8NR4qulpO7Lti1KGF+x6nd8tE0bXeIJoh63bqvNFjBluZ8iFAhVNb38pAGJ3s1ZeCpbtQSXgPKW96xqqY9NaO0J/LeTEU6uaazLesssBvhIaH2Ow19FVx4TLUGTb+UTx8zLdzoNty5UQewmaCw8DjDCAqwEcJ4v8CsoA0WUKfFnQjK0h4q+3JsIFe1gV8LfMJqafo3Cn+jolaHjUU3WjFjas2Tb3326HGaj+frN3Awi6ncUNfVvPjRcCvugNbanwg25k8JL3M8itZ9r2jMGfciqPcEbt6AWVIzLlh69KzfmH21kGon7kIlN51TXQCAE41abV+W9kiYJrEuGX7bjZ/hDrshJabGY70pgBFE8BsKE6djKDj3c7Ry6Yuc3tDLsN+QJgwNdyCzNuR6nsHxcAMJ4VPxH0tXw8nmqKOzlRfU3zIZQtu5yIr8wAFwJs+0q//WIc2VAdO7nQhU5RuhqqF13AjOvcziGEUwI1sVrSuBHgSyHvYYoA1zGjLuiPrlQZfHbVtvDrDs5FAV/s28TIbaVTEWPgWMMwng74Y1PbEqE/u50nVwF/7IoMZxYB8LmdxWU+IjwQNFumeRWuL+TBOZdVx6p7wJ/P5Rpi/uJj7U2bnMoknFGRrjhKK34+aLY8BcI9KjNs5apt16bcznUgQfO+kUzpyWD+OBEuBaPctk/cjBU6q0NrCrCKWjOV0ZCuFNDU2tELKtduvaHL7SQAwAbPKLEHv1t2pt607VTqfA3hN89MDWbsTgY+53YSMSBVIFoR8EVvbEuFm+28cZ0ZHe8BXQHwlaxxLojda/qg+EoAUgAUBxVBRK0z1I9L7AVRiIPqa26/4zqAPwfNH3E7j9gHxlRt4KKAryWyK/Xmj9YikrHz9o1YZuwwFy9iYLad9y0SY4n59/W+RR9fnZqzyu0wVtQi4qkwJ9zJzDe5naW40NVpjaODldFgoU7V3UV6LoFy2cG0fkSqaqFjgRzDVDdq0eGGUseCaDwDI0AYQUAlMap590IOQgqMHoA2KKX/nc2of7d1zN5QDH0a7UPngnGuNnoyQTP2JzCv0qRWrU7O/qfbySKIqGd8R3wEyNQDFAR6zyPu79Fq11eA0ENMX2xNzZ5fqK8rEZXZ9wcoSSMqMhXTADzgdpAIImpdiW3/BWOZ3e+L8jEkC4CNWGbs8McWy0qZkuchwt1Bf8wfT4S+k8+N6kYtPEIpdRURXQngDAYXxXMeBq4A8DW3c4jit86c0AjGKW7nEMIuU8c1V2R3lc3tQtfnAYx3O4mBCLkAACAASURBVI84qAoiumO4b8LV9bR4pn0fRpk6zdjdNDiLf7uNUKQeClZHA/GO8B/cDnMgdWOXjjHS6V8zcK7bWYrUJJTh2YaaJfWt7bMc7fkUxPxyEH02l2uU4luK7TC9fQmOWnwkebIBBp0DjWNBsWMBo2L37xPwn3rMe8oy/N//0JpAihE0Yx1Ay3oQPaeIV+9of/PJYvowngcPwBeAcIGCvj1oRjcS4Qmt8Ucm9ceRyYqXnf1aM0313Ts+g+xJAJ8J4rPWgU4nZEc6uLHuJUXqE6sSs9cDIafmeB9iXcZDewkgWPEMFEEB8Nnqw85Dib0nZGLX/972NOS+k4OYX05m1a8YPMXtLMJWd8aToVusPwliCvii5yqiRgYuAfBBR9PlQbE+oVT7fYjCqEXEM9yc8AqK+PtYvF88Gbb1NThoRr+PIusbqlV6XK6HNjViWVmn2XUDEW4FY7RT2YSjdgL0mXgylPdKo4Av+h2iwbPt9yC2ac0Xru5o+pvbQfblEv+SQ7OcXQ3gw25nKQFvqywucHJbfNDfMhNMS3K4ZHU8GQ44lSc/TPX+2EVK8zQQBQAc7eBkHSC0gnnJmck3fxtBRDsxSdCM9uLgJ5RvjifDlg7OaaiOncyKn88hwk4ALxDwVw28Asa7DHpLadqk4E16qZcf7gh1vCcz5perUf4KAEiju9rjMcZkta4hpWqIuYZAhzLjSBCOBuGDYJTnkCcfXWD835ZU+kdunEbb4I99gpl/Uuh5C6Aa1utB6d60ccjjnbMSTgY6mKA/dheYP2lxeC+AHQ7EyKXtxevxZOioYlqFPKRWAE5Csxdm2f1S/BuUPh8wo3RWMnLLgV7Ip/gWfSRLxpWE2JUAnVA0/xIPIKvUZQCkACj2a5hvQiOGZvFvF4BXAfQSkAKoB+DuPQcwYRgY4wAaB/BYAO5t6RcHFfDHrujSXbcTcNTQ3m1T8oYDfE/QjF6U9Xqa1myeOaA34EFfy7UYOsU/ABillIrXjVp4brEdDHLJ6NjR2Wx2DYDD3c5SIg5lA6umjLr/HMf6tDFZ/RAMAKyU+oojOfIwraalKs00Cxy7EYxjUJhVVtVgXAPQNevMCRuCFLunPIuf710MGwSGAziTgTMJAAggMGAwNHrQAyBoRt93kUYPAMCAAWZAkepfWUm7/6dPgV6jGVjmIePmR5Oz3i7MjO/XmgjdC+Bet+Z3Sr0vdr4ifsLicK/Xk70KgK2tt3IxCc1eMDdaHP5SZUXlpOVvTd9pd46gP/ZlMH/b0mDGg8VU/AOGUAEwgoha5/cuBvOVbmcRziDQzet8E46qK1s6d83mmVt2///1NdFTVZavBNGVGjiGSuxTJTGuBPAtt3OI4hRBRK0jfNntHAWQAvA4GH8G6CVoevHMbW/8O5cn97WIeEaMmjAh61FHgLOHg9UppPgcME7AEHo9LEZT/AuP0+y5G8wXDL29CYPaxz3p7BFTq5qnrOyc157LhQHfkhNB2XucCla8+BDDMB6dOq759JWb5nUffLzzGmqWfCibzT4JYIzbWUoJA8ey0bN66rjmWru/lv2nYJ6dwyXxVe2z19uZIR+Tfc2jyqjsK2nN8wDk0sPQbhPB/O0ehS8GfNEF6Yxxp9srnEQ/xloGf60t1fRHt6MMVqtToScbzOjfGDjJyngCroaLBcCxPm89A35ro7nFieJf/73PsjyU3N82vbch8oGHaZ1/8QIwX+N2EuEwwjQjnflo0B/9AxgKwInQOKxATxSdcnJw1OIj49tmv+Z2EFF8nqkZfwlpDM6DERh/AeERgNZUJkf8ee9eNrkeAb4WkQy24XUA79mSVTd26QijN30BiOoBBAAck19wYVXfdt8dt2rwrQAXaiuRKCAGn5H1ep+c6ltavzI1c6OVaxoPWzZ8R3fXLxmoOPjoQen47C7vDwHkssLLEVOrmmuyOvsIpPg3UKc78rU09Nxc2lUrwNpqFccxBfzRWcT0Pe5blV8sRhLh1jJv9pNBM/odJLt+GsdNPW6HGpIIj4Lp2/FU6Bm3owwNFAP4x9aG4sJAdezwto7QG85m2jcmy+c3ZMlQ9zuRYdqYhWPTGQQtDl8fT4ZfdCJHPoZEAbDBjN7GuS2TF6WtCoxL3A5hJ1bZKwB83+0coviQVjcMspPJOpjpfsVY1NoRKsgJ2P3bE+P9vxDwLTlRkb6OwdcAOLQQGYaigG/JiV3U9QABHx5c38Jibwwcm6HMk0Fz4bnx5Ny3DjZ+R3fX9xg4thDZihUD8wL+2Jq2ROjXbmWYOq65IrPL24Yh/rXIFwPzGszYw63JUJsd96tFxMMgq9vgAOCZVcnwn+yYOx9BM3o8EGsBk/XVM4XnA/B9mJXXB7glLKvPCiYDRisTft6WCK92O8yQYuCXyOIHsFYXIlL6SgB3OpzqferGLh2BdMZSGzdmPBHfGnrXiRyZtLocZK2Gxsy/dCJDvgZ9L6QGMzqHQbe5nUOIfBDRdLcziOJzyejY0QBf7HYOm3QA/L+VFZXj2lKhGwtV/NuXttSsF1qToS/sTG48HMDVBHrWrSyDVYMZDRFln4EcJjCUTACM1fUjF5kHGhTwtZzHwP8UKlQxI+aFdWbUtdMOs7vKFgCY5Nb8gwkT/2zquGZbVrRWmBMn53JAEjMW2DFvPgK+2NUA1gEo5uLfno4moj80mNEf1h4eG+Z2mMGKgL8BmFeuaXQ8Fb60LSnFv0Jr3Rp6F4QcHk6Q1VV4tlK9mcsBVFoZS0T3OZWDiWZaHJplI+NYjnwM6gJgQ03LaQzMdzuHEDaY5OaHAFGcdJY/hdI/zT0Dwl2edProeLLpTuf6deRuLSKZeDL8y9Zk6Eyl+GMAZCVAnoKYXx40o1EGouhrUC6GluOVRz26v0JII5YZpGg+Sv/nml1Mg9wp3gR80XkMnu3G3IMS48hMj9eWBQkMvtryYMJWSnUtt2PegZiEZm+DGf0JET8Iix/ei4hi4HPDt/PTgZoWaQ1in40EzGdFH21Nhk6JJ8P3DMIDWEoKa8plu+zJDTVLPuRYmP0gBauLYXpVtuw3TmRoqF40EVYfYjCeXN0+7x0ncuRr0G4BvqhqiZ919lcYGh8wdgF4HYz/B8K7DO4iUBeY+hsOcxWIRjC4EuDDiOkoECbi4EfTi+JBinA5pKAt+jViWVkXuj7hdo48vaIVrlndHv6L20EOZlV70+8BnB8wo/UE/AAYpH0XHXRR1RI/ebO/YeB8t7MIV52d3VU2H8CcvX+jy9wRBuMUFzIVL8bUgBmtL+TKmPqa6KnE+IlszbfdZ4Lmwp9a2Qa/P7WIeABMtTqewMtbXeplF8T8cpjeXzPQ4Mb8NjqZND0X8LfMbEs0OVJYGOQ0AX8HsJKUevi9h9GEXAsl/qtqxIhHurq7tsPigTxa6xkAvuFsqv+6qGqJH5yttzSYudWpk9c10Qyy+oCSqOgO/9htUBYAI4iodd7sUgAT3M5iO0IPmJ8D0VNM/BRp/Zd4cs7buR4v/Z/TMBXOJOAcEM4DcAIAw5ngIl/EdCWkACj6dfl3NIBR43aOgWJgkfZ6Ptvff69ktCXDq2sReXy4f+KnwPwN9PULEgcRHLX4SBjZOANHu51FuI/BTQFf7LdtqdAvdv9//Q81vuZmrmJFwI8mofmk9ZiXdnquRiwr69JdiwHIoTx2Y5QDns8D+NxAbzGiZvz5WuOA2+j3pDUeHOhc+eg/yGcFA5PdmN8BlcT0qwaz5ZutyaaI22GKXALAOoCfIahnGN51rcnrtrsdSuzf8rem72wwY8sZ3GRlPIELWgD0erJXASizMpbIuZ95RHSttYHoUZmyh5zKka9BWQBc55t4C8Cl/rRpT2kQVrOm+73Deles3DSv+72/PTfnG+51GuaDAFA/cpFpGDQdRNcwcB5kC06R4XOnjVk4dsWWuZvdTiKKgNazSvR06wwRheOJ0L1uBxmotYhkkMBPG0bHlnNG3wWiy9zOVMymjIp+UBt6LYDD3M5SQFkw/g2Fl4nxqmZ+hxQ2Q2OrVvSeIo5iVgw1CgAUYZjW+gNEahygP0CgQxkYD+BwN/4QTiLiu+tGLVy3ZtvcfwNAp68rRH1/VvF+x40xPTcgCWsnNeahy9/1f2Cc4PQ8Qxbxpy7xL/nBo4lZbw/kctYqaP3gL3rnrNTGP9ly8kgOGrGsbEf3juUOFf/6frYSNoLxFhTeRf9fCDN7CagC6FAARwI4AhaLBhYRg24LmlGKJ8NF3V+eCGex5qOI6FIGzgAw0YFpEgS8yMBLDLwM4EWl9cutHXM2ODCXcBhrvhcKlgqAAI6pr4meWqgdPKQww+KPvc4RFVUrkbQ/Q8C35EQga233j+a4U6sQ7TDoCoD11S0ngfibbuewyRsMzE+njaWPd85KAAAc/FZavX1OEsDdAO5uqF40kUnNBeFTgPUnjcJRRm/auAxAs9tBhLvqRy4yQVR6DzkIPQR8vDUResTtKHZo7Tth7PIGX+waJr4LFrdODCVKl03UBv8Cg7v4twvgpwB6AsCLivXLOtX9atzGbXdTRt3vg3fXyVlNJxPhNDDqAfjtur9LRhmG8TMAUyKIqHUKt8iW0wOhr0+raWlZ0d7U6dQMDb7YCcx8s1P3FwAY5RqZuQAiA7ucLZ2C2TdYPxRBRA9knnx0+bt+DIb1nAe2BYTfkuYnweqZ7mq8vPaN0C4rFzZiWVmn2TmJQOcSUM/ABbCnIPj1gC/qbUuFv2zDvRyhFCUfTYTvB3A/AEyraanqYT5OsTqCiGs0qxpi7QdROe2xk4EJaTC6QKQB3gYArDkBRVugaasy9JaMps29I2mr1a+DKA3xjtATQTP2Biw+cFQaMwA4XgCsM6PjwRZbxzB+41QvcVLZa6y+R2FSRbv9FxhkBcAg5pdDYSnsfdrjhvUAvr8zufFXaxHJuBGg/+nNV+vGLv2ukcmEiOlmBh/hRhbxX0S4ElIAHPKUQUGU3s+5bjBf3ppsWuN2ELu1pkIPNNQsea6/76z0BnwPftrtBA7IAPgzGL+Dwu92VtGf1r4RdvSDUP+T5N/3/0Ijlhk7qrefy0pNA3AVnFndUQgNgZqWac9q1QvmI90OU+R8aY3rAdzp1AQMno9B9tmgGDFodgSRb+ZanGsYHfsAZ/k46/NgWe7p8hPwR2eB8ak8b9NLhGVgun9EcsRjyzE9+5/fyeGoiOWY3oskngbwNIAfTKtpqUprdTXANyHP12oi3NpgtvSWynbg/gcHz/b/yp8DK6yE24gJLUsYZHF1K13biGVfes+/Twco5mtBZOngWqdO/23EMqOLLfdd76Bk5woncthlcL3Im1VfAfhEt2PkYQMzfaktNfuXufb0c0p/f66fNWLZPV1m5/8A9BVIzys31daPXGT2r9YUQxWR5QbgRUKD6Np4Ijzoin+7tbbP+lfd2KVnGenMYvQVZMTgwgA9CfD9Klu+/D1bOxKFD7Mc07PowBMAnogg8oVnfRMauG/FfgCApTfKxUJp9WMG/8vtHKWBPtuIZT9djum9dt85aLbUAai1+75inyY+UzPxArRjbS4XcZYvhPX2PG+flXqzoNt/g9WLTgHjrjxusRPAPVngzjWJ8Jt25dqtvwi2EMDCgC/WQH07xiYN9H4Mui3gi21pS4V+bltIIVyktVpMir8OSz9n+JDums4L0N73YNIpRJhhcejbZyQ3PN7qQIbums4LoGmcxeG/tnMHiBNK6k3igdSPXnQUiL/gdo4B2kmEL+8cScf2NcQujuLfnpZjem882XRnb9o4mpkWACj4lgIBAPAaHnWp2yGEe4KYXw7YtrWmQOiT8UToYbdTOG3N5pk74snQdDB9CdabNIni9iIRvkxaHxFPhi6MJ8P3FFtflwgiujUVfjSeDE/JEn0YwGNuZ8pF/+4Ca6f7icM6/V1WPwzlgAmgb9l/X7Ffmq01k98T4UKrQ5n5d4Xc/jsJzV4otQTA8AHe4iHS+rh4MvzZNUn7i397a0uFWuPJ0OnMNAPApoHeh4h/2mDGAjZGE8I1bR2hNwA8ZXW81paLcwMyxbfoIwBZXNxFy536mZfVdI3VscW+/RcYRAVAlaW7+07XKjX0BGs6vjUR/m4p9FJ4vHNWoi0VupEI50Ce2LuCgUa3Mwj3qJoR5wCodDuHVQwsiidDC93OUTjE8VTodhBughQBS1WagAeJcFY8Gf5wayL83VJpar4mEXo5ngzXEfgqAAM6ZEAUN2Lc0lews0/QjE0HcLqd93TIP8H4GYB5BKrThIs14WIGAmB8GoS7QHgeJfCzl4Dc+/ha7YPVN8Efcr5/Hkb7PJ8FBnR4TAcxpsaT4cbC/5wlbkuFfuFVfCwR/xwD+75RDL6voXpRqbZhEOK9GDkUsOjySWj2OhVFkzHd6liGdqTlQSOWlRFwhcXh71YlKtY6kcNOg2ILcNDXEgToIrdz5IgJ+PbmZO8312Ne+uDDi0trIrxusq/5DK8qWwAewFNMMXCEjwXN+0bGk9dtdzuKKDydxeQSOp/775TsutHtEG6IJ8I/C/iiCSIsxSB5rR0C3gTTAqQ52toV3up2mHy0Jpt+VT9y0e8Nj/qlQydxCvd8uKG65fzWvi3geYsgotaBv2l9Z2nBJUFYhIy6J75t9mtWLpjiX3icZuOLAD6B4l3sMG6Kf+FxqxJzX7IyuHb0gkpkYbn/n8dQtnx/WNF3cKDVvmHv8U/DoMsf3Rp61fZQOejfGnxDgxlbyeAlAMbkeAs/K/WLWkTOd6t3uxB2SSP9gBfeO2FtNW/N6BpPEO1woOcdExCzWGPgf7UlmxzpOd3p75xCTJYORGXwA073RLRDsb4oWhZBRIHoDrdz5KibCJe3JsNfK8Xi326/Tc3bFk+EriPQZyFbgguHUc7cO83tGMIdTFTrdgaLMkSYW+x9MJzUlgo/COAGlMBqlCFuAwFzd46kD8VTodvjJV7822319jnJEcnKKQCibmcR9mKlbHvw+qw5sQ6gD9l1P3vxL9CLY+OJ8BetFv8AYFVi7kvxZHh2324VvOVgwLxoGJYXL5RnKk4BYFgcvqmQRTVW9D0AI3K87DmVLT/f7eLfnlqToTZk1UB3OJ01zJz4FdtDCVFgv03N20bAo1bHk0PbgAP+xacB+KDFFL9wIgMAEFt/vTWUUfTbf4FBUAB8xjfhGpTWqYubmai2NRF+xO0gdmlNhn7CxFcB6HY7y1BB4CvdziAKr3b0gkoqjW1aYMb3WxPhdW7ncFs8Gb6HQJ9zO4fYF3oHwLydyY1HtSbDi0qhDUeu+vr3huYQqMXtLMJWV08d11xhx42Y+NN23MdmaQDz4smmGfkU5FsT4XVZ4BwAb9iWzE5s/YEeEZ+Ww40Ltvqvzh87FqBcW9OsK9d0cbH1UwWA+LbZr3nSmXPRd3JwTgj81fqa6KkOxBKioJjpXuujaVrt6AW2tyYi5o9bHZsletDu+QHgsupYNcBW+66/uKp99nonctitpAuAEUQUEb7sdo4cbNFQF7UlQn92O4jd2hJNvwH4cgCD7gNUUSKqs+vNvygdFdmKswE41mvDRpt1mefbbocoFq3J0E8YFHE7h/iPnSDcXq5xfDwZvmfwb9ki3pzs/RSDC3kgqHDWyMwub96nwQeqY4eDB9CLzlkZZrosngzfY8fN1iTDbzIbl4JQhKvR+RTrQ3MZSwUrABqab4X1lYkAsMGTTl/ycEeow6lM+VrZOa+9sqLyIgC/yfFSj9JYEEGkpD9fC7EztSEOYLPF4RUVmQpbd6b1/xuyWgBcvyYRetnO+XfrVXw5gGEWh//SiQxOKOm+ROvMCVcA1vthuGyTYVBtfOvsolnqbrd4smlNvS9Wp4jjyH0rgMhNRXaX5xIAjjQ8FcWJic8ohc2kzLhtzeaZO9zOUUzakqFvNJix8QxucjvLkMZYkSXcuCbh/CmTxWQ95qWnZO+/Rhs9fwdwqNt5hA0I1yLPDxxk8CfBORVvHEfEn40nw6123rMtNeuFgBn7LoEjdt7XBofXjl5QuXbrDV0HG0hEx1u9KRlckIUGU0ZFP6gJlk/HBLBTK1yxsnNeu2OhbLL8rek7J6H542NM78PI7cCWs541J8xCEjGnsrltSk3LR3UWk6GoqH52MNNO6uWfO9HGI+CLXkeUwyE8hcLYujO1MWL3g8y1iGQCHHuIiG+wMl6DpwO5HB5yYH82J5wF4DBLg9m5z8IMutpqFx9WLAXAArnZ7QAWpYgpUEx9LpyyOhV6ssEXvZoJv0Hpf38VNc2QAuBQw5jkdoSDIeDlylTlIrdzFKPukbhx+HZ8BMCZbmcZgjYRY15rKmy5r81gs2rbtamgPzoTjMdQ4jtABADGxVPHNVes3DRvQO1XgphfDiBsc6o80a9aE+EFTtx5l9F95/Ds8P8B4Hfi/gOkynX58QCePfAwJiB2jMV7csbwWjpYJF/soblgtvxen4hvWd3e9BcnM9lpPealpw5rbkzv8j5GfVvJLWHgG7WHxx7E9hJ4YjsAWY0vEFGg2B5IExgowz8BPGT7vQlfAvBhu++bNwLKfYc9jRRW2X1rVtmlxMpSAZAUAlNG3e+za1u/Zr4aZOlgKp0lOLL9d9qYhWPTGbbap/W5tvamV5zI4YSSfQPY4I+eCeBst3NYoAl0TWsq9He3gxRKayr8KIG+6HaOwY6IjnU7gyi4oi8AgvknpXAClhvW
vhHa5WHPdABb3M4ypBBWapU+bSgX/3aLJ8K/Y+b73c7hir4toCkAO92OYpNh2V1l5w70YvZVXQTGaDsD5ak96zUc60e4dusNXQQsder+A2WwOmhRYarv3vEArPbY2lCIFfi1iHiYeWYOl6wfkai627FADlm5aV63kS2/BMA/crhs/PBtfBOK+GjtfJDFyowbWHGvE/el3La5F5QiNduJ+65OzHkWgLX6BaNcGz259gLdp1pEPFB0taVpGX9Yk3RmR0cm47kWFr/uTMihZ6L7SrYAyIzr3c5gBRG+2poMDbm+O63J0A9BNDQ/ZBRO0u0AonAuqlriBzDB7RwHsa3bs+s+t0MUs5WpmRs101UAHHmTKt6jm4lD8UR42ur2ee+4HaZYGJoi6DtkYTD7BwE/YtB00vpwz7D0iHgiPCyeDJvxZLiisqKyQmVxJBHNBHghgHfdDjwQGjow0GuJ9GV2ZskXE/5vzeaZzj4coeLr0cTgg25zy1LW6uo/ACjI6r8K34QAgHEWh2tN+tOl+nBw1bZrUwYZAeTyc4JwO2QnVMGRdqYXPXNRfy0vmTLqfp8jd+YcPsuzPacBV5gTP2r14RQ5dPgHADDYanuDjPZ4HDuF2AklWQAMmveNhPXGkO4hrGxNhL7ndgy3eMp7rwfwT7dzDFYEjrqdQRSO15Mp/n6nzEut9DIa6lanQk8y0+Vu5xjMCPRv0nRuW6JpsdtZis2qbeHXAV7sdg4H9ILoblJ8ejwZPqE1Gb65LRla3toxZ8Pe22SXvzV956pt4ddbE6F748mm63cmN45nxZcC+KNL2QeEQAMqADZimQHQpXbnGTDCa1sT6bucnmZEovI5AEV1+AQRPnCwMQwcnsMtXxx4Gus04RNWxxLwcP9qopL1aGLW2/19N0uyiDlkaHLksB+i4up3uJdhdq2+21vG0PfC6vc84YKgudBa374Ds1bjIfSobJnt270BIGhGj4flXVf0O8cfXtmsJAuAjJ5GFP8hEx0Z4k8CVGQdEgqn7w03zQGg3c4yyGgA32xNNkn/vyFElcCWb6W04x/gBou2VMjWJvdiT7SmJ61Ob+0I/dXtJMVKazjSZ801hJWkjBPiidCnWtubnsv18rWIZNram1bEk6ELCJiLIisSHcDxA/nA1eXrPgvAGAfyDAgx/XQ95jm+KnU5pmcJ9JTT8+SE6eAFQOYjrN6OCvDgvRHLyggIWr5A8XcdjFMw8UT4d0T4mts5xAEoZwqADC7mAiAA6wX5XDzW3rSJgN9bHK4Inun5zBfE/HIGX2lpsOa4XT0H98HyQjMmtu3wk0IpyQIgQeX1zVUIBNzyWHvTJrdzuC2eDD0D0Hy3cwwCDOAZALeQ1h+MJ8O3uR1IFJYGF/cKQMLzqxJzC7L1SIj9ItxRmRzR8HjnrITbUYrZ6o6mvwH8gts5bLBj9zbv1vZZ/8r/dsStyfAiw6AzCHg5//sVgnFWrlcQcfGs/gN2ZjPZgvVP0qz/UKi5rGDw2IONIUWW239osOPft9t9O84EUGVlLAN/GkhRvlidkdh4O8CPu51D7IfOOlIARBH3AOx37pRR0Q86cWMmtvzzmcH5bQP2VdUBqLYylBw6/ANg6l/ta0V3GfGvncnhnJIrAPb1weKPuZ3jIP7Ymgy1uB2iWGS9xlcBvO12jhKUBeEPTPgMkJ0QT4bPjifDP2jtmLPB7WCi8IjoQ25nOBBmesTtDGJI0yC6KZ4If7FU+0wVGjNKvV/n24qypzuxzfvRraFXyzSdDUbRn1hKoDNyvYbB05zIMhDM/NDq7XMK1tNYKbKhUGwnGnnQIcwTLd8N2pGG+O+dg62v/iPc42CUgosgoslQ16F0VgkPKcpgR3oAovgLgKQNXOfEjbMe768AWG3vc1pDzZKBf15RllfebeseqVYMeJ4DaPDHzgDjSCtjGXh0RXtTpxM5nFRyBcByb3YairypKmn9laG89XdvazbP3AHGt93OUSIyAB5jxie9nuyh8US4ti0Rnh9Pzn3L7WDCZZxTD6CCI/BytzOIIWsXEa6IJ0I/dTtIKSGiVW5nyMMGD3vOcXLV8cMdoQ5PJl0P4FWn5rADA2fmMv7impZxAHI5VMJZBhzp4bQ/2Sy/Ucj5LBh20BF88D6Bu0dWJkc53ouKCJMtDk1zWq90NIwLWreG3iXmW93OIfYhYzizApCKvgAIMD4BsO0nNPd/jre8yk1rPaBVgI2HLRsOtvhwivHI2jdCzhz4otnq6j8oQsltC2EuRQAAIABJREFU/wWKvJC2H9afOrmAwW3xjjlPuJ2j2GxJpReN8Xs/b7WiPsR0MvPDBLXcM7z38b2blQvRz+ppewVHoH+3JkMFaTwuxF56WfHH4+1NjjwJLma1oxdUlvPwDymNo5n5CCI1FoTRYD4EwCgNNWt1cvZ++4HFk6GXgmZsC4qoF5xFu6D15Ss7Zm50eqKVnfPaG2parmFNfwLgdXq+geFTIoioCCKW+i17NJ3jdKIcdFcNq3qskBMOh9rQg6J6Rl9+0BFk+d9oYjmmO3rCfONhy4Z3dXedbGUsgx8v5OrOQmpNhZsDvth0InzU7Sziv8jjUAGwuE8B7kM4KmguPjOexDN231or3KsYM63F4BkAvpHrHF3dXVNgtbWAQ4W3WkQ8UHS1xZeIxIhEZdyJHE4r/m/mPUQQUetQ5D9oZaXbPq3HvHSQY7cDPKi2AuRhJ4A2MP8qjcyjv03N2wYAcKqVqShpdWOXjkA6Y7qd4wCKqqeSGCIIPaRxVby96VG3ozgpWBkdTWU0ifH/2Tv38Kiqc/9/3zUzgUACzJ4AShWpt1q1rS39idZasSJkJoC1NlSLAkmw2Iva9niqtefU9LSe3k619dI2QmYApSoRRZBMgjdatYpKvdZbrSJaFEgmgQyXZGav9/dHggZIZtZMZs3ak+zP88RHMmuv9c1ksi/f9V74ZADHgXE8CMfD/mhTgIgAMHrftAqS8wBc3f/MxIzwBgIcX1e5N0R8VWP7wufytV5jS82zQSv8c2TxQJMnSp+0Jn0SMeXmDxnXDNQHPd7w3py9+VxxdXtVe9AKd0DxQTMPpDQAg7hpGID0acLdbBu4nNTs3hv/NBTNcGIaxBszxMz13yeiZ1Fgz9P5g98AaEMOJjoTgFIdbOrap6sGoFrWJOPvIOS05iWBTmGwWqkHlt8Acm8AjmoteTRuxbdCLRjhEzPG1H+mu9awOgxUKoUvEnbsaE08ksncqgwLTJwKxlg1GbRa94aLLgrqhPVk2cRThESZaR39wy82tdU8blqFU/EO71qR3Of7DYDRprUYogNAI4NWSZ+ncf22ebtNC3IpDLw2f8xR8QqHwM7qqugy+CF0SikvaG5bWMhprIcwdVJk+Ih2+1T2iDMh+fMgmgzgSO7t7Kkm+DDOSTeEGJtABWUARhtba/LewXh7LPGLcZZvPgAtRdYHioD8JNS7v56hU0tGkLHNo3Y4xwBMnVpoFSs9jPag3QBk0KlQDI+RJAZ1RlRze80LQSt8K4ArTWtxIgTc2Rirrh3oPEErcqlqAAkN83ZCT0U2Jc+ECdc2xaqbc7nw7LL60oSk9wGMTDtY0IWTUfcfue6q3oA5dhDhPwO4SmW88NBFAJQNwOnjl4+kRHKmylgCN+jqGu9hmsuK57dC7P67n4KqAehhPt20hpQw/cm0BCezduuiPWDkrdObM6D3CbiJmc8siZX4o7HqC5tiVQ2u+eeSCdJOOjpFj4G/mdbgMqSQxDx3MJh/k1HnKw8sPSfor78+aIUfK+7gdhbiL2D8HERfAXDkAKb/zPTxy1M+MEhIVdPICeyTHnmFiYU3YVGCiX9mYm0lFJtEzZpQNwLAZM1qlGEyde3gvEYdpiFlxBJzkXr0P+GDAatJB7NS+i+AXafHNmur0ekYunA9oMlycsmYf7ckjTYBIULOjak1LTUdzIqdZhljx/mLynOtAQCIabnyYMaFmdQjFF3J2QBGqIyVUk/336mTIsMZ/FXF4VuntG7ZoENHPigoAxAsPm9aQgr2CjnsLtMinI7wiKWmNeSBFgaWEChYEhs5qTFWfWVTW83jbmdKl2wRoDGmNaSgIxqrGvw3+S7OgXBlY6xmlWkZ2TLNXzc6aIW/HrLCfx5n+bYTy4dAdC2AL4IV6oGp4yU7mbLZA7GnYAxAZtzYvGPhm6bW39f67h0A3jG1fiqIcZzKuMRe7+fgnFqG9j7ak9NUuQzQZRJkQ0oDkMDKkYrE+iMACWqfNYCfUa1LWchE49U7APqdaR2DGWZW9SukrsgwAEUqg1iylpRQwbxEdSwRL9ChobGt6iUAmxSHHxUaU3+m6twk8A3FoW81tVVryToq3sXnQbHcAoFWFPL5raAMQAY71wAkPLxu51y3glsa1rUs2ESgt03ryD30PhH/AYRzSmIlhzXFqi9tjFU1FWptABeHIchvWkJ/EOhVt+u5S94g/CraWn2LaRmZMrusvjQUiFwStMLrfOTbDuAuBi4CoNXcFzL1w/pp7e9sAVAI16k9lMCNJgVsQG0SRI6sY8yQiqYMnaRXSUa8vmHHd+JmlqbCiQAkWaI+Fe8aqJi0KygagMz0tG4tTiHBXb8F0Jrl4e79UxpI3a/QUv9vKmq9UNQgBGkxIBvbax4D4V8qYxmYeU7psoAOHQRSzuRjj0epG/A5pcsCYMxQmxR3anvmICh3/4UszO6/+ykYA3Ay6nwAUu5kGyan+f6DGpIF2TGnD14l8E8lxMnRWNWExtaa70Rbqx9xI/1ccg1rNgkGiNv91yUvEHBvtLXqR6Z1qBLETcOCgchXQlZ4ZULSNmZeDiAExUiCXMCU+mG9Zwf7/TzJyRoClnRH2pjF50nWA0ia1nEopGTKCHLOfTQBrxlc3EkRgDtTvUgZ1CqUrPfnClp3jAJwmNJgwW/o1OIkHmpbtJORXRNIykPdxkKHhHIEoBYDsGj80cqR+baGFOBuiMG8THFw0TBvslKHCu7iPwOKPyPz13r8m5QM89nnQzEyXQh7hdLaGTKrtK4MDNXU6Zcb26ue16EjXxSMAXj42KJJcE7awiEQedab1lAoSCpks5SfANM13aZf9YmNsZra5tiCgkmhcilMGOzYxjmS5eumNbgMCZ5P+rzzCiHadGZg2ceC/vrrESh5F8z3MVAJoNiIGMkqteG2atcxQIhsR9RYXrP90m0AnNjYYFzlESvTfsYYOCEfYlRghrnSEZw/Ez4thJTGNpNC4f8P5yJdHVABABLJDGqSet7Vp8R5+IYn6pDFuZRBxsoaFAoMoepXaDHAffs8yucLj60nAhAASPJyAEppp5LoEh0aovHqHSA0KQ4vG+svOldh3NcV53t+XeulWq4bttf7Naj6TISCL/lWMAagnZTHmtaQgq2NLfOHzE7XQEnayb+gsELeXwHoZ1LyKdFYzRejbVW/ck0/l3xCEsNNa+gPQXjLtAaXQc92L3vPc3rzpBmBJacGrfBdNttvg+haMDLp3qkFovSRYeT8CMCNum76s4EJ95vW0Be747vSN4tSrBWYF8xGiJkx5PuCUxuAxKRuVrJeA5AEK5/TWCQdWS9TFz2NDn+e4WFMQJ0WQYMIYrMpwFzUpRwBmBS6IgCBxvaF74DVNqAIOL18TGSSDh0sSTn9lYjnpHo9WBIey8BUtbmwUnXdTGGQqgnJUsi7denIFwVjABJwlGkN/UMvm1ZQSDzUtmgnAKfvDHaB8EdB9onRWPVJ0VjVT5rba5Tbmbu45BTh3Ohnm4XTzQOXwkYS6OK1bfO2mBbSH6FAeErQCjcKFhvRvZPtpL/XCekGMNCeDyFZQ6Ql5SdbWMhG0xr6Qno8KQ3AIG4aBsLH86UnHSyNbh4ZN+f3w+kadzB7Veci3anNUvl9k2LHHqff5+ec7W2JJQCeAtCW9ovwHBNf0BiretCU3kKBwYrXVNZjgCdsZQPQl9TTBGQ/DNQrDiUIzNehYd9orEb351iFr00fv7zfKGYaxnMAqJzjZJJxh+KaGVE+JjIJhLNUxjLwpMlmZLlC+aJiGkliPDk3aMytgZUhDH6FQBNN6+gHm4HZTa3VBZyq7DKoYCpyatCsz4sPTGtwGcQwftHY5swHpIqypZOllD9jRtC0lhSoFALv0K5iANjJ5AOmNfSmecfCN4NWeCsUzNV8wtJOaQBKa9SxAtKTLz3pkFL+28S6PTWpDjexdp8Qpy7sL8gLVrz+s9QbAchcBlIa2h7FFVq1OJFNWJRADKeb1jHYIIJP7U9AUwSs1zcMUq28e8KjLwIQAEpHlqyK74nfDIXa4ER8CcD/k+vSKRs2V+0LWeGVDCxSGD7Sk0jOBNB31ByrRt7R4+tjVXo2FUheCJDSmU0QF3Tzj/0UjAFIxOMd+vwLuAZgNrwCKBfbzCsE/C0ac80/F+fADJ/apSn/2LbPsQWsK8qWTpYstRRCzjmM56Kx6oJPK8glBDy2p21LrWkdBxMaGzmMbb5eSrkAzs+kGFl5xMrihvfmpOh6SrucusEA4NX1Oy9927SIPngM6nWL8gIJShmd5WH5cXbOdYS7/N73U7e/0MPYMu/RkA76uxUipQHIzF7VX5vuCEASGKPoRe7RqcNlaMGsHFWvxQAkO1HEpHbK8Hr01QAEgIb35uwNWuH7AFSlHcw4JhSInNrYio05FyLlnyGEigEIAuagDwPw3LL6CSxxhsoczP0YiDmASDn9N+n1yHt06cgnhWMAMsoce3vK8j3TEgoNcnAKsATcpgYujoIEPA59PrejsYt3mRbRH5xkGwJXm9ahBj+B/nZIhyZ72BZVG1DrmI6rlVhZFPfv/j7b/GNk0JnTNPE9OwMA+r1PYZZ7yKE7DET8qGkNfcHMmzJ4aMgLxFSW6nUmGucgo7dtw+YqI514SdIpJtbtDylTRwAKELHq741I7/mSeRiUQgDZNQBdcgYBPpW/AAb0pN96vMMglXpvoHOf0GoAAgBY1INkegMQAIMWALk3ABvbF/41aNW/AVDaRmMMzJwxaonVvGthrPf3vRIXQW0Ttcsji+7MVmsqQv7Ipxisek1Y39MIrOBxzg5YGpicWwSfHZ4+40Sc/J4Ra66h4uKSKayprsnAcfTfSmN71fMAHFmvyyU1DPxXdOeC1KlxeSQ4JnxWPBB/BcS/RAGZfwAgpUiZBky6TYMBICU9aVpDXxDBiTWBR6R81QFNaXph8iHKSSmaretjVamDCEg9rZdZ77OSVGxIQqAUEccuLpnBpBYBSKQp/VZK5RqART6PdgMw2rbgCQJeUxrM/PUgblLWnwkMoZoOW0ReOv/QbytuohGa1+2cq1pzMCNY8Fz1wYMj/RcoIAMQmi9qA8Pr2AgY5yKc+54JKpjIWJchAulJa8gBTtX1IQzcZFqDS4YQntsX23KzaRlAd+OEoL/+egg8BMYxpvVkg/BQagMQelOWBoSHnzEtoW+k80q/MFKaM0wyfZfg/GGy8Yxjys8w+Jl09blkBpvSTKy3uzGxkpHAbgqwSw6hNOe2D2FNEYBC7XMPAHtHJbQ2AdkPE92uONTPgZEhLSIklkExrJyAi3r/e+bYyHEA/p/KsSyhJfqvFrUCjG8oDo/bRb7VOnSYoHAMQJAW9zoXeKQdN62h0BAOjgAEs9qFxsUlTxCzQ3fTNRVcziFNsar1BHJiDTGXvmECvuWE1N/ysvpPwBr5NIiuRQGVTDmEdF1ESRp/r/uhq7Sl1JHd9kpio98H4Kz3LU2mjCByjAHIYAPV/4CKwOJPAviEibX7hOk5hTHK11khnRIswWr5ki4uCmRQA1DLZpYt1SJfAQCb38nLdYFsewUApb8zYlI1uTKiqb1qM7q7XquoOGv2uMXj9/8rmZQXKC6zZ59379qMxSmw0T/pdABHqoxloHH9tnm7degwQeEYgKTaAiv/2D7V9uQu+5FCOtZkI00XEBeXbMkkAiC/sLMegPuEmIlXmlbhogaBljW2Vue+YHWGBK3wN0nS8wB92rSWgUIQKe+fGMKh94K8uQFz1Fov5pkeXe+b1nEAjJQb5eygFGACGTEAJTzzTazbH4Lor+nGZNLYQxJpjQAUILXIPtarw2VoQYopwGA2HQEo87V52di+8B0ADysOnz2rtC5ljdgBsFRxnDeZ9F64/x9EiqYk0X0bdnxHS6AVkbxEdaxgqEZcFgQOvenrA3bug6YosHpAToBsR79njo9qchla6O7sNwAca+T3hoD7TGtwUWJPEvwTkwImo84XCtTfCqAOcEo0zcCw022gsnp6Uz5h4C3TGtKw1bSAA0ifnjk+zev5JO8G4Oyy+lIwvpnvdVOwd88obEg3KJO61EJzvXQmxdp+BNcAdMkZDNUagJrKWUiheo3Mq1dB6mnARUmvr1KHhgQn7gagdF5g8EUAMMNaehKATykdI6Gl7l4QNw3j7u7EKrRsa0s069BhioIxAFm1/7YBmGmUaQ2Fh3PfM3au2eIyRHFwY5qCiH4+tXXLMzBbdN5FAQJuWB+rNtYhPmjdMWqc5VvHTN82pUEH6SIAQRmkN+UTFo5pAtMXBPzbtIbeUPpIzjF5EaJG3staJCS+CcCf73VT8KRKJ2RbZFADUHO9dFYsR0KgQbF54uIMmNUy7ZhITwSg+iZZXjPIkl7PvVAtqUVQjnbLhIfaFu1kQDVFd8rMsZHjBFit+QewfV/bO+uz1ZYKLhs5A6rXA0LDJiwaVNmBjjXVDobIuRFjxOykG4rCQMAyLaE/nNyh2GVoIjN4AMgzBWEA1qJWAukjLVyM0s4o+o2pxWeOjRwH7toE4FxTGnThITt1nSCHRgASSUfW/+tF6u6teSddpoyjamnn9WEqaC0+AqDr8rlmWhj3qAwjycrXf9Js8gpFA5DButINXYYgqinAxJrOK4rNbwBNTUj6Yf22ebuJcL/i8NMqRoeP1qFDkHqUnpT8NQIrRSMScJ+ulGpixQ7EAGDjbh0aTFIQBuCMsrrDAZxiWke/EB1vWkLBIeHY94yY3EghF0ch2LGmdHF3z4YCgOgJ0xJcUkC4LRq72Eh3+IrA4k/aNj8KwrEm1teMTLupRalrx5mCSWwxrSEVEhQzraE3kinNg5KDGpwR8ljbkQnsuRXOKtdj+3z2vSoDiVm58DwDE7KXpABB9TNfGrTucGymj0thQVCLUmdILQYgsXKUfP6jxJiWK44k6cHFOiSMbC2JAmhRGcuMnzBwgtJYTd1/p469tQSM8xSHvzulfctjOnSYxPEG4IyxS44Vtu8BOLsD34mmBRQc5Nz3jIV0DUAXRyGdVmvqI7xBa4WTHqr6hWwMugv4IGIvCbrRxMIV/iUnS/Y8CuBjJtbPEQzgHQDNAP2OGZcRKAjgJJ/gMY0tNc+mPtpRkWEf4uCNDwDOK81AlLZWtmN+z9oidfqgPBC5HITZ+VpPkUfWbL9U6V6TfJ5Mms3oPY8RvaM+uOsIfUJchhKsGAHILPRE4KlHAObdADw19s7DAFQ3y6p0bNo3YE4XQHcoDlctD7A52l6VtklSNhTL4V8FMFJlLDPu6MkiGlQ40lSbXVZf2mWLCoL8OmyaBYLHtKZUsHSumeVMmICIkvtvBBbO6uznMuTx2LRNOvQsSHKfH4CRyK1M2NP+zsvF1sTdULzou+QRomWNO6o+yPey5f5ln5bCfggO6o6qSALAsyD8lSX9lcj3+MCiJ+VIwHmBvAT1yCcTEGFf6uKK+YXB6aLqHGMASqSLVswN5WX1s0nihnyslQkErlMdO3LHyB1xK24DSs9CWiMABTzv2YrBmwwcCeAVnXpchgbM7COFa5QgTV2AWQwDKZ3t824A1qJWBrn+DhBdqzB8UtC/7AvRNuQ8I0YKvl1IfC9X8xHRXVB80zOGFTsQAyCCqrFZUDgmArBi9Ap/eSA8PxgIr0lI2k7Ed4LoK1C74JlF4KRZE+pGmJZRKMywlp0IoMS0jv7wJIucXnfIZYix209OjQCE7RUB0xpU6Kkj4j6MOBBpyz/le82ZYyPHEdkPF5D5twuM5cxU
Yfu8/mis+gvR1uprmtqqGgeaOs1M43IlMpewpD2mNaRCsnpttrzA1NnfS7WoFXBQzVZCms7UOSDor59LkhrgvOeIf++JvatatwsNmGMDtF1x+ISe37UWPt/69vtQNDmI8RldOlyGFqR47mIyXgPQSKMIj1csRXcmQFqIpJZmIM0t1X8H8FLOJtTU/Tc0NnIYgGlqo/nFaKx6UD43GDUAg6OXHhP0R64OWvWPS09nCzGWgjEL6uGhzoAxrGuv52zTMgoFARk0rSEF29ftnNtmWoSLS296OgW2m9bRF8Lm8aY1KMN41bQEl0N4srm95oV8LnhO6bKAbfM6AAVQqJ7fAOibe0fR+Ghb9fymtqrG9dvm5TYyjpxpggofnB0BKNQaIuQLEv2/X/844kTHRP8BABja6hFOnRQZHrLCvwfR7YC+dbKFmW/JuLA9sWqEtG9jyURtm3I9qXBKG5Ik8CldOlyGGkK1CYjpLsB5bQKynwd2VP0TwNMqYxmYE8RNeq4HTCtyNNNLjW1VuTMTeyElz4HqphALLSakE8h7CvC5ZfUTfIzzpaQLQPJLADxOTD3JFA+JcwCsM62jQFB03k3A/zStwMWlH7ZCc4e/bCDgKNMaMuAfpgW4HARxXqP/KrGyKF4UXwXGcflcN1MI9LZk/vFpbe/eXYtaqVx6P5u1GOMceRsmhaMjAFNF3BkhRbOIHZ07PMUozqealBApF9VXphIrPR3++Bzq4J8xcEyu588RLfu8+27J+CiGeokErzwCwI6M11CF8BI4/XWfmT+tTYPLEIPVIgB1ReCRcp1cIxGAAEDEtzPTFIWhfrJGzkQMq3KtIemRt3slXY8BRl0T6Wn+AQDEUE3/lTaxawAOhNCYJUdBeC6Q4AtI4jQGBDnxZnNgBAH8wLQIpzN9/PKRSCS/ZFpHfzCL501rcHHphw/gwIZDPXV+CgNBb+Qh88xFnV0lxaUN+Vxwt7X7D2Cclc81M6QN4Os5Fr+lCVd0NuVjRYIjU4DtTttINIUqzM66lyVQvN8Xd+zYB2tiHtWkhlN2JGYKBSKzQZ5XT215+81UBdhrUSueChw1GYxQHPEqAo5SS4QzBOM3G3Z8p//fU/+oG4BEJwJ4Los11KZn3sSgmQojT5oxaonVvGuho7pl62KWf/lEm5L/wWmy2AjYJ0ExgnxySuzdhwZjgwENqEUA6koBZgxT3CQzZgDaCb5T+Oi34PS1XiXTJUDuDcAHW2q2Bq3wIwDOHcA07JHeXEUSHkCobNnxLG0VkxQEPLE+Vv2uDh1OQJsBWO6v/yIJmgnGLAZOBNiRG8y5goETKqzwF9bFqv9mWouT8STsbwAO2oY+BH7KtAIXlz4het+R5pUQBRMBKGFvFc4pfTvkIcKahvfm5C2NMmSFqxhck6/1MoWBlYmE59sPd8xvzdeaUydFhmMXj8rXeoMKgSInmU2S+08B3oDaZBDhBJxSB5D6T82tRIOIM+4F22KjNXF3COE3GRwHxG4C79w/joEjNgKfJuYCaezEb6Bt9++zO5Tfh6rbLEhr6i2z2KRYm98jvOLLAO7RqccpJJH4PUBfSTeOAVDPf5+2Jj40OVYX2oRFxoyjQoAAn8onjllPExAixfUNGoDNuxbGgv5ws0rHcxIo12XOM/GfiWkgBuDGtW3zVLsaZwSzXak8mPhuHRqcQg4NQKZyf/gMQVTJwGwAk5x0Y5QPJLAQgGsApsS5D18AIDwepRoKLi55h/kN0xL6hh0XldgfgtmxzVSGIixpZb7WCvkjn2Jw5ql3+WE3g69sitXU53vh4XF51GAow2ICYipSrLueJ2hnmgF7AIzOh5J0sOR+G8E1YI4dRDiG7hqdIxn4TPdnlB31bmcKg65owhVZpY0T0dvKPzvrrb2X9MhNXql8zjgXQ8AADAbCXwYjrfl3MAxMGxfwLUIrnHptcgSsGgEIoaW7uAQ8Kp94bRGIihDxcgalNQDBGObx0BwAOS/BUkRYlWDcAiC7jRkifWm36um/Ce7M3/2pCQYcCjGjLPy5oD/885AVeYWIHmPgCgCTBi6tIKmcXVZfalqEUwla4RMBKIXeGmJbY8s8twagiyNhopdNa+iHEyejzhlRJWnYHpPb4Kwn9qHMTrR1rM/HQrMm1I1g4gYAI/KxXiYQ8BoLnmzC/AMAssXxJtYdDJDDPk9CcLrIUcc0LSGidA149NWwMwHRn5pi1c3ZHi7BmdSv1WoAPthSsxXAW2qjadZU1Oa93nw+qcRKDzFuyHoCplk5lDM4UWwaxMS2juVJsaYdsVkDcFssuQZAi8pYJlqgQ8OalpoOZG/6J7xdXVrq/4XK6j8P1TJKhKZovHpwXYMOImMDcDLqfEF/ZFa5v3550ArvEBKbQPgxAyfoEFhglCSYrjAtwrEQXWtaQkoYzVDMa3BxyTcScGYresawwwLiWNMyVOhJs8lbeqVL/zDzmmiW0TCZkuz0XQfgE/lYK0Oe6kx4vtjUUvO6MQXETnxfCgIGW6Y19IaTIuWDH4GcYwCC0nSqpUHz8EWgt8G+qwcyR5KTr0B98+rIitEr/ANZLy3Mik0P+fBi/5EDSQd0PHGr4/LuKNUsYT46h3IGJ6QWAciS9NRTZDUDkA11Ad7PJixKgHGX4vAp5WX1Wq7/TOL2LA99cG3HIiUDM2MkqUb/gaXGKESHoGQAVmJl0X7Tb5zlex/Ea4joEnSH57v0hnGV9gtvARLyRz4F5otM60gFAw+a1uDi0h9dre+8CYKzuk72YEvPKaY1KMNoNy3BBRAQeelvERoTOQXsyAZdUdvnnZbPen99w24EYJYwpzOx8sswSh0ByGAndVUem+b1wWIA7pEsvhKNXbxrIJM81LZoJ4D3VMcz7dVbB5BI0QAEQDRfoxSjlI+JTALo5wOahNBvOrzLhyhmmeiJAIQgNQPQcAQgALCg5apjSYq5OjSc1rr5UQAZN9Bg1tP9txIrPQy6UHF4h6+4a40OHU6iXwNwKmq9MwLhacFA5I9xK76ll+nnqBseBzJGeju/bVqE4yD+EXKQcq4Ru8hnuwagi2PZgNokGK+a1tEXRJhqWoMyhH2mJbiAvb7kw7oXqcRKDwu+DRobnmUDgZ7eO4q+un7bvH6bNuRPDLkGYJYQsZM2wROr2xeo1AB0BAxO9ywxSLov0uVNbfNfzNFk6mVAPOKMHK3ZJ6WxkkfatLeFAAAgAElEQVQBdCgO/2pozJKCaRamDhN5eCmyrXX2EW4R1nQoRgAS6YoAZKV7CNM1AAGgqbXqGSifK3gewDn//NWiVhJRpp18d8si73251gIAuwLxswE+XGUsM69eu3WRY66VujjAkAnipmHl/kgoaIXri62JHwjGg2C+DMB4Q/oKE8Z/zgws+5hpGU6hwgp/gYGvm9aRCmb8dc32S7eZ1uHikgqiDB4A8gpPNa0gAxyTBjdUIeDFfJxv49bu+QD+n+51MoPeFyS+umFzlQOMaCbdDQMGOU4yNd5PV8KEGU5qgjRqVmldvwYqZVbzzpEQ4dporCqcwymVy4Aw46wcrnsIDZjTxUBUcbiPhbhcpx4TBK2lC6H5fXbpgZU38fREAKrWADTYBbg3TFDtYHtUhRU5XYsIiYzSaBlYp2tTlFjdg2AM7u6/+xEAMDOw7GMhK7IEVsk2Il4HoBpupN9AGG1L+w+mRTiBIG4aJoHFcHb0HwhoMK3BxUUBZ9YBBB0XGhs5zLQKFQhuBKBp8lFuIYibhgF8ne51MiTJkBc80Dr/36aFAEBFYMkJABxVx67AmGRaQC8UPlOknEKaD+wi3zH9vcYsHBntngG/b2yt/kUuJyQgE1P0i5VYqdQ4IWtI3JbB6G/OGLVk0JxruhsK8E2mdQwhlJ4hmaSeCEBFA9AJKcAA4IUnAkUzVIIX6NDQ2Fb1EoBnVccT0x06dFQesbKYgDmKw7d1tr2XdbOmQkKEypYdb7P9MoNrAIw2LWjQQJhd7o+o5psPXqzSH0O16445EnaRd5VpES4uaWFSvpjmGYLNQdMiVGDXADSOZLlB+yLWyG8BmKh9nQwg4OamWM2TpnXsR7JXz87/EGDWhLoRcFB2DCnUhyPwlnxoUaf/9PNhXMARgEzXRGPV38v1tCREJqnEI3f5d0/JtYbeNLXOfwTAPxWHl3p89DOdevJFsCQ8liWtAjDctJYhhJIBJyD0RAAqNgEhIkcYgN2bjLxBbTTNqTxiZbEOHUxQbQbSur2tS0td6PieeAWAUUqDGQ0bUJvUocNpCGb7twDGmBYyGCHiW7oLxA5NZvgjZwJ8jWkdCty/ftu87aZFuLikI+nz/A0OSTE4FLrAtAJFHPr+DR1EQjytc/5uc4Z+pHONLHh3j2fvT0yL6A0BXzCtoVBJdBadBAfV7mJQ2ghAclgEIFj2GwG4ur2qHcAHeVSTC2yAvx9tq/qVjsl3t2x+AYByMxEifFmHjl4rMDMvVh3NTItmlIU/p1ORbqai1ss+3A21zaUEgE2aJQ0V1CIApZ4IQCLFJiDERrsAHwBBtRnI6I49u2dqkdCJO6Fwz03APZuwSNe9uXr3X+JB3/13PwKML5kWMYgJkOD7enaKhxRBa/ERgrgByp2bzEGgTNIYXFyM0VMfY6NpHX3B4OluB3SXdBDo7Wi8WmuHT3uf7xsAxulcI1OI6McbdnwnblrHgbDWRgGDGcH8GdMaDkS+k26E7bDGGsxI+R4SqJDMk5hkeV40VvM7XQv0RKY8rjqeoNsABNjmegDpms/sxyMkbusuz1CIMI2wjvoTEc5WG446yiAF0iUFpJiCqykCUEKqRQA6JAUYAHyE+6DY+IlYKptkmRCNV+8g0Pp045iwUsf60/x1owGoZidtbopVP6VDhxMRAGKmRQxyTkl2Fg0pg2nqpMhwgncVHJQek4J/nhp7R3s3SheXnMH8V9MS+sEnvftmmRbh4mwYrDX6r4fv5mGNTGjh1g4tN7jZUjE6fDQDJ5jWUbAQf9a0hN5I5rSpmB62nZUCTJQyAlWCC+LejBn3owsnNLctXKd/Mfwlg8Gnn1O6TGs99+ZdC2NM+L8MDpmMQMmN2gRpJGhFftNTLkuFdm8y8VOtgoYSrBYBKDTVACQItTr2pNYtOB+saanpAGG10mCikK5zBYPTpQH/e0rrlg061i4i31ehmKrPjDvTNdIaTAgAj5oWMehhnltuhRfraLXtNCqPWFk8YhevZfCpprWoQMCva1Grq2isi0vOkYIcfM6mnNc9chlcsOYI1oqy+rMZqSOL8g6hPoorOk3L6I308PmmNRQyzDTVtIbe+LyeN9KN2dZubwXgpPpG41KVyWGRidllhL1MuLKprep83VHN+5Eio/qpPp/X/pouLfspIv49COo/P+NbwUD9PI2ScgxT0Ar/DsB/qB9DP1zbsahFm6Shh1IEHnR1ASZWu36zcFTGH7NyGnBRkddWbZSRESUjStYgdZTwXRqfw5UjGz2QQyb9FwCEZOk2P8gDBCwMWuG6wWwCTp0UGR7fE7+fgWmmtSiylWNx1QKlLi6OoGhY4m8gOMpM+BDGZ8uterexgEu/EOEFnfNLmxbonD8bpM13mtZwCExaav4MBYIl4bEAPmlaRy+S7+/o2pxuUHeNJXZWJ3nifq8Xp7dseR7OzFJigFZ5PPSZptbqm/IZNdLZ+t7fAXSojieBizTKAdAdaURM12d0ENOSGf4lFZok5YxKrCwKWpEIgCtVj2HGo9HYgiUaZQ1FlCLwJEGPkcS8W2l9sKMMwNJYyUMAtioNJlyiQ0PDe3P2MtDQ3+tCCC33R+eW1U9gqKXrE/DCuraFL+vQ4VS8naM9Dxfv4g4ApabFDH7o0qC1dPeUWO1/DLaos8ojVhbHd8bvAuFc01pUYeabmxwWleHiko61WxftKbfCm5xawF+ALgfgmE6nLs7CA8/ruuaejDofCE5LQ287vf3dl5pNq+jFOaXLAiD7i6Z1FCrso3PIUZu5/JZ6AXXaBODTWuVkABFmAOjzAbAWtTKE8AYGvppnWf3CwN8AvqopVm3kGrcBtcly1D9BoHKlAxhnTrfCR66PVWut/7gn9s6txdbEiwF8XvEQnyDREAyEZ0Zbqx/RqS1bZo9bPD6ejN8DIJNz5U4p7ZqhlEqom0qs9MShWD6X9EQAEsRuRvpfKQEluVgvZNVfwKDpCgvaYHzATG+Ujhx5f8N7c/b2frkBc+wgwn8GcJXCsqfNHBs57oEdVaqdvZVhpuVEvLCPl15f17JAS61Xj6SvQzFylBlDKvoPAMSGzVX7QFhrWsjQgb+30ZrYOLusftAYrtOt8JHxPR1PgTDbtJYMeHffaKGtWLOLi04I3GRaQ38w8PUZY+qdlYLp4hTaH2idn7ZbabaM83unAXBWIxrGY07b8PP57HkAHFOrqNAQxJWmNfSGQc+rjiViZzXWIIQqsbL/hzQmJ2QpSQCNBAo2xarPaIrVGN3gIs6oDIgQzBdqE9PDBtQmmT01UOj42YtiAI3l/rD2KMVMmREIT0skPc8iM/MPzHTZ+p2Xvq1J1pDkLbSp1d8DIGzSdK1ViwCEWnfolARx0zAG/QnAN9N+Mb4F4KdEfGd8T/yF0JglRx2inD2qmW5k23zxQPX3RXPbgscJdMjfBYO0ZUcQMFdxqLSp702owYwAAGZSKxLpkitmJCSis0rrykwLGSjTA5ETPIRHAXLMjrIKzPTLDZur9pnW4eKSDcKmFaY1pEAIItdcd+mLnO8sHwDRV7TOnw0EZxkuYCLgUtMqCpVZE+pGMDDDtI7eEOFF1bGS8XedWjKGMXaPFZ/S38vJIs/9gGr4T47prmv3W9ji+GisuqIxVuWIjTdb0JpMxpOgvBhsTW3zXwTwi4wOYgwjwoqgFf7JVNQa35SYXVZfGvSHbxaM9QCOyORYAuqa2qru0iRtyFI6qUi1/h8k9BiAzKx6Djo25YaGylr+kkoA2fgDx0GIQ1LPm9rmv0hQLr1ysZ5SZcR9NQPxevRE3pWX1X8CwGSlwYTHdEdIOxEBAPs8e6IA9qYZ65JT6Iykr+jFoL9etT21w2AK+esv8zA/C8YxptVkyOs72roWmxbh4pIt63ZWv5XBBT3/EKaWW2FHPSS7mIeZX9O8hOM+c8S83bSG3lSUhafCWfXrCopEp68SwEjTOnpDUv1a4BuefAHOagQCG3xBf6+t3zZvN4C6PMppBXixJJxb0lpyeDRWfVV054J/5XH9tKxvrXoNgHq9KsZng/6lZ+hT9BFTYlt+CsIDGR5GAH5abE18LlRWr5pCnFOmTooMD/ojVyckvQPCd3s0KUOgdSNjJd/RJG9IU9rVpRwBCGItKcAMUu2gPnzP6PghUXiq1KJWEOFH2R7PwDl9dfNV6MS7n6PL/WEt5wrpkbcDH+VRE+hpHenGAECSlJt/gB0dUKENAQAbdnwnDmYnlagZIvDhIFoXDET+OHXsrTmpG5APZpTVHR60IuuY6I9w2I2wCkziO+r1clxcnIlkdvROMwHhitErnJWO6WIUIn0RgDMDyz4GIOsbb11IEq2mNfRGSrrctIZCRjB927SGg0l4WDmqb+3WRXsAvKpRTsYQaP7USZHh/b3u89q/AbBZ0/LbwLyagR8w0al7Y1sOi8ZqvtncWv1QA+bo6SiaC5gzigIEye9pUnIAtaiVMiHng5CNaXoyS3oiZIX/NN0KH5lzcX0wdeytJcFA5PIRu/AKiH+J7EpIvNqZEPMd/XkpYDrtYmUzlllqiSIlhvLmJXvw5WzXeSow8RIAJ2Z7PAAq8iQOSUNOCtwJxQ7JgkhPGvCOhW9yr/rgDKkp7ZYJrNj9l9Ap7KJ79OhwNh+66gxaaVLIEIbAfFmxXbw5ZEWudEIIfH8ErTtGBQPhXwrpexNAgUYuYllT64KHTYtwcRkoUsq7AYWqxOaYID2dN5oW4eIkhLb6f5KTeYlwyRSC3Glaw356omuclyZdIAT9S89g8KmmdRzElgdbatS6PPbATH/VJSZLAsUdck5/L67Zfum2aKzqaAAnAVRDwI0EPIRuI7MtzdzJnjGvAmgk4j8w8ANJONfntQ+LxqoPi7bVnN8Uq76xqbXqmQ2odVR0ZH8QRKYbgOdXjA4frUXMQTTvWhiTLM4DsCuLw4sYWOQh/LPcCi/WExHIVG7Vnx6ywr8vtou3gPkmBn88u6nwZlLwtIc75jtqo2cw0bXtLeVmjSSoSIuIJJS7p2fbtChoLT6CGL/P5tgDEJ5hB3+r5xqxXuVwBi6qPGJl8YB19AGBlvb8bxJdeiLvKqzI6SAcqzSY6YF1O+emu4YMSj40m5JINPrg6wKg54/HJR0BBv+u2D9xXogi1zTGqh40LWg/U1HrHe6feCHQdT144AVODdLq89pXmxbh4pIL1u+89O1gIPw8GJ81rSUF80L+yPrGtqoh12HL5VAYrM0ABMiRBiBAzomClfQLZJja5tIb+XPTCg6GgaeyOKwRgLPSFbsjK5f3P4A4GsMrwKEP4kHcNEyMDowQwi6VMukFAGmjY28ZdTix1nPQCv8mGqv64UA6xTa2Vb0UtMLPAzhF8RCPFPw9AFdku2YmNMcW/CMUCE9nRhOAMRlPwBhGwEKWtDBohTeBcB8zP7Iv9m5WJu10K3ykl+lMCHkGcyQE0KQc7J6+6oW3PNoyLyMD3iUzNqA2GUTYhkJHV2I9BmA0Xr0jaIVjACyF4ecERy89JpPSAZNR52P2LCfC6OxVpoYZfyZSCt4ZtXtPRwhAzhswCbvoHuntvJkYjzXGq3fken6guxFhBqMdnUmlkw8NwIfaFu0MBsLrwZhpUtCQh/A5Bq8P+sNvEtEtI0eMvO3gtt75YsaoJZbHS1cw6DIA401oyCVEqFmz/dJtpnW4uOQKlrySiJxsABILDpeXRbY2tVRtMC3GxSweltoMQGZ82pHWFmGsaQkAELTqpzMwzbSOQqXcHwmBeKppHX2QsQFIbR0PwyqJA3BS6Zkp5YH685taa+7L9MAorujETnTi4GhAM61DUhK0Iv8D8FUAfjjQuQh0O4NVDUCAqKpi9Irr8hXx0thavbGibOk0KeV6qBkn/TEZjMkEQrE1sSOI8BsM/EsQvcUsWxhoB8QuACBgDAGlgBzFJI4F8zEgHAPGWCbOXX8Dwl9Ectj5a4do9JABOgGMSDeISFMEIABmvECEsxWGFsErbwQwW2XeSqz07A7Ew8xKc2eNLPLe50kklc77kukSaDAA1+2c2xa0Ig9w9yZUzpmKWm8GBuDOvaPoAcR0KHE+BxTWZGa3G7BTIBzL4N/F98TfCPrrr59hLT0pPwszVVjhL5T7I7cIr/gXg67DYDD/gHsbW6vvN63DxSWX2B4sB+DsepaMYST5vuCYJU42Kl3ygSzWFwFIDm1GJXGYaQnTxy8fCaI/mNZRqEzz140m4j+Z1tEXQvBjmR4TxRWdYDyiQ89AIKZfOLkMzkAJBurnAfxfuZrP602uANCVwSEl0tOZ1xqg61oWbGL2nA3gnRxNWQpgMgFzmPkagP6PQEsIvJLAKwG+jcG/ZdB1YJ4L4DRwzjdhbkNrfMZQTR00hFIaMGcTbaoICaiXj2LMKrfqf5tuWMXoFf4Of3wVM7TU3evN+m3zdoNxr8pYIgRnldZl04k4/dxCXGv7PHfrmHu4NfEcqHsW9zoxQjxfHGAA+hLJ++Gw7mAuOAJE1wrIl4NW+LlgIHJtub/+i6kKJmdK0LpjVLkVnhEKRH4Rspb+SwJPEPF3oPFEmmfe9SQSi0yLcHHJNT11PZQu6IYZAyEem+FfUmFaiIsx9uh6YOqpV/MxHXMPGKIzTUvwJhO/BjvUIC0AfKLoVgB5aUqQIbFTW95VbgByEE05VZIbPlFsHVVlWoQOyq1IJUC3IYcp+Gu2X7oNhEwL2P/nuWX1E3KlQYWmtvkvdiU8kxnsxM9cJuwFqCYaq14UxRXKdelccoLa+517s/dDyKZ1GY0H/aDcH36kvCwy9eCNjenjl48rD4SvkJ7OV4lwXm6V9o8U
UO0GXGQXeTNIpVWnsWX+Gz3d3XNPt+mvNpTEkOz+u58DPpBrOxa1BK36vwB0jilBLik5BcynEBGKO7iz3ApvIsbfQfwvsPiXEMk3kRzxwQc74/GDu9wGcdOwrtLRJV5P8giPwLHMdAwIxxAwhdF1MgEeZif3E8iahAAuXNuxqMW0EBcXHTCJxcRSy4U6x4wUJO4tD4S/2dRavcygjoKPaC5QtNR7AYBde/YcLQ7a0HQOfPrssvrSNS01HSZWL7fCM5jxLRNrDwaCVv33MnmoyDOP1KJWZnUk2WsBz61wXE1IvnHm2MiGB3ZUaesYnm+C/vAPAf4lOPfvtWDcKqHY8bKbEq9NvwAwP9daUvFwx/zWWtRWPGUd9d8E/jEAXz7XzwEbWfD8ppbq100LGYoQ0M5QiKbXWHKjsb3q+ZAVfoGBz6geQ4SzIfnsYmviriDC+89pZUgkP4aDPJi0cwH3ZttgZD+jWksejVvxf0Nhw5S704BvHch6+WTWhLoRyX2k2uRsa2nriA069TidQz58zOJeInYNQKfTXSD3CyB8ASCAGJI9gKcT4ywfghTuBGNPz+hSAN4i2ACou20o7Z9mcEOga9bFqv5mWoeLiy6aWuc/ErQiLwH4lGktChQRY2m5P3y+7eFvZ9q9ciBUYqUnHohfD8bkfK3p0hvW1g3XK+xxUjrMx/gIX0JSCICWlJdUBK3wiQDuguNMntwwzV83+qG2Rdo+V+X+yIUA/0bX/AOFGQ9le2w0dul7QSv8NIApOZSUC0Ymk1xXi9ppWZubjoEpZIWvY+A6XSusi1X/LWiFNwEZXNcIl8wILLm1uXXh07p09UUtaiVi+GmFf8kqJvEHBoxHRyvQxsDP9sW23FwoHaIHI8z4AIQT0o0j5nGapdwCYHEWx41CJn+jh7KRgN8O1ABswBw7hMifGfyfCsOnhMqWHd/YMv+NgayZL5L7fLPQ7XekhcF3NWCOrVlS1sywlp7kAU8DeAoTTujJ4BjVa4gN4N9gvAXwSyTEM9zJTdEMGqscsmNe5Euu6pnYpZBhDAPg7/katDVVUkL0p8ZY1Q2mZbi46IWYiBz7kNoXRDjPK+mVciv8/VkT6tIWdh4oFYHFn4wH4g+D4XYBN4Zo1zWztIWTmhn0xTW5qz6vxvTxy8cR6AEMnlIeh+Ajb1XICq8MWneMSj86M0JW5EoiXgHn3j+xV3geGMgEBCzJlZhcQoSzn7aO/IlpHQMhWBIeGwxE1vTU0dYKg36V4SEkWPw+3+ek/axrW/hyY6zqLCauAqCxM/yA2E3AjTIpj22KVd/omn+GISg1cGTgaJ0yRsZKlgPYonONPtgtIWokKDcbIqycBgyWUnttwpxBUI7U9wjPn3VKyYZKrCwKWeGFQSv8koB8mcG/Y+AiMD6LA80/oLsj9kQQpoLocmZejiK8H7TCTTMCYaVmb4cYgD01JR7Pwc/i4mIQfnh7a9cVplW4uOSDba1ddyH/NyUDZTQBNyT3+d4KWuGrZpfVK+3cZcKMsrrDg/7wzZI9L4BxVq7nd8kA0hcByMBIXXPniFNCgYhSR8BcMDOw7GOeRPIRBn88X2uagoFKoOvZirKlOYnsrRi9wh+0wg0M/h0cm1YOAHj2gdb5AzJPRo4oWQFAmzE/EBh0XciKXGlaRzaE/OGZGIZ/gDEzH+udFntnFYBMU1NPCwbCl+jQowZxU2vNUsTix4DxbeSuSchA+TcRrpVJObExVv2D5l0Lh2iPUMfxgeK443Ua2w2Y0wXmy3TN3wdMhLnNsQX/yNWEjW1VLwHYpLj8/FrUOvk6CACYPW7xeDCCisNfXteyQPHnzwdM5f7IhXEr/gZ3R5eenOVEHgAzBOPBkBX+a6is/vOpBvf9S3W7AbsUNq+jiy46uA6ii8tgZRMWJYj416Z1ZMl4AL9JSNpW7g+vDgbq51WMXuHPdrJp/rrRoUD4vHIrfLeQvrdA+C4Kr97QoIMl6zMaSDrdAAQzbg6WhLXVJ9pPqGzZ8TbbTwA4SfdaDuI4KeXToUD49hnW0qx+7qmTIsPLrfD3pbfzdQBfy7G+3EO4f6BTNLw3Zy8j4yYSeYPB/xey6i8wrUOVWRPqRgQD4V8x4X6dzQgOpha1kol/mfGBTDeExkaMdimP4orOaFv1H0tiJccz45KeRiH5jrZLAGgkwlf2xrZMamyt/oVr/DkMou2KI0ecWxY+XKeUaFtNlIA7da7Rix82tlYP+Fx/MARSjYCb+KT/qDNyvX6uSSbE+VCM1mfKfzmW/phRVnd4uRVuJOI7ARx1wIuETgCPM/gGgGok4dz9X2CaDcLlzHQrgFcOnpeBM1nSxlAg8ovJqOvz+afPN8vLvnuTlLwBhVs3xgbhcWbcLyQ9avvsuLA98wD+EZybzuGSG7bYwLnrM8iDd3EZDIxsLV0ct+JXAZhkWkuWFBPhPDCdJz2dMugPvwXC8wC/yCz+KcBx8vBuwLNr/wFJm0cQ4TABTGDwpwmYzMDJzPAU6sVrsEIgbRGABCEKoKLtkSiiO2pRG9RV26zcH76YpX0LgNE65nc4ghkXC8i5ISv8uGRe6/F4HhnRMuL5/mr9BK07RhESUwC+gHdxJQDL+R+jbog8DbmYxyPEn6SUC3Mxlwa8DGoIWfX/0xir/ilADv3tMAUD4UuS+8QvAdZqPvRHaWvp7XEr/kMAn8zgsIBM8p8AqBbO10YD5nShDXcAuGP6+OXjPMnkHAAzwDgdQCDHyzGA1wA8xkTNRSQfNNWkyUUNlvw2Kd7U+aQ4CYDW+tKe4YmF9r6iYxh8qqYlJANXNcWqb9QxuS267hTS92t0R42lRJC8BMBjOnTkDCLVRkhMSZEv8zYlQSt8IiSaARxx0EuvMOHXxEX3RWMX7+rr2IOpGB0+2vbiG8T07V7XIMHM14yzfJ+pHLHygob35uztfUyfZtjatnlbglb4WQD/L9MfyCAJABuYsarIZ69es/3Sg+sF/KS8rP5ZknQ3gOEG9LnoZxsJz7nrW+a/a1qIi0u+acCcriDX/xeI7jCtJQcIEI4FcCxAXyNiMACWBOAj70Qc1MzIoU+HLgAgPmxKlXOYOa76cGAWnv60NfGuWcPrFqzduihn70fQWnwEwXNDdzrskIcYOJOIzpRSIm7F9wZR/y6YthJ1RxYxUALAD3Qdx85O8+2PZ3JVmH1dy4JNQav+RYA+nYv5NEAMuq7cinzMN7zuylz+3eSCmWMjxyXt8E1gKjd5BWrAHDtE4R8xI6MMLiKcV+4PL2pqq67TpS1T1m+btx3dzRZuAZgqAktOkOw9HeATQfgEGJ8A8HGkD+iw0d19/gMQ/YOlfBkQL7JtP+VG+BUWzPwKKV7kGXw6gAd16lm7ddGeaf666T7yrgMo1xFyLQxc3BSrbs7xvB/S3LLo/XKr/kEClacfTZVTJ0Wu2LC5ap8uPQMhNGbJUQx8UXH4U9GdC/6lVZACFYHFn5SMvwAo6/XtGAFXnxrbEs50k3jdzuq3APx81oS6G5L7fFcD+BE+ynwKxvfsXj0ZdTN7Z0amOnmuhPMNwA5mXk0QDSUjRz50sLt5ME0tNWvK/fXnEtE6HFpQ0aWAIdDbUuLL0dj8zaa1uLiYoqSt9K6eKMBTTGtxcTkAydrSuggULxT7l4HK5D7f0RWjw3N6btqyZlZpXZntK/ohg7/LQHGuNA4yigE6HoTjC+MTogLntIA5k/gpMa/K5Zy5hoCFyX2+c2cEwgubW6uz7n6cK0KB8BQG/su2OUQgR5jIja3V9wet+icyNSSI8LvgmCVPR9sXPqdLW/YQr2vFqwBe7f3dyajzHTa6pCSBPWPI4xvhFd2BHUmJfV5b7hUysWttx6IWI5IPgLyFcm1yMp1jxOvFu9iGQsRajwGonYfaFu2sxMovxwPxn4HxAww8w1ASaHlCyB8/2FKjNYIRAASL25lYwQDEmOG7MAtATqLOc40kuohUM1YJxpt/hMZGDpM2r8eB5t/LwsZ563ZWv9U4gLl7NsiuK/fXP0iC7v2oFAVPH2/5bkYMH9av7PfDypLuIcG/hvPSgHcy8xqCaNg7Gg9u2Fzd7Ui3qR3c1FbzeKis/hyW1AzA0ifTJY+8BWl/ual9oVOKCLu4GKEBc+yQqL+UJQhfKZoAACAASURBVG1EYUa2uAxSiKCtJqvwyLiUTrtVSclk6cGrQSv8R28i8fNMHlRrUSs2+iedzrAXJYkqAXYzGoYShE7b68vpQ8xpre+sftqa+AIDn8nlvBo4SjCay61wWNr2/67feenb+RZQ7q//Igm6mhkVcN7zESD5cgh6BgpGSS+GwyMazildNuXhjvmtuqTlkk1YlMBOtEH56c8MzPxZB35KCo4Nm6v2Ba3wWwCOSzeWQKdNRa03H52bGzCnC624OlS2rJ6lfS2AryPzLMM9ABqk5Bub26tfyL3KvvEUd61O7vN1AEjbgI+IL4FDDUBST/9NotNs/b9a1Iqnbb4dB6b9Nu/17P3ahth34n0dExqz5ChJdCRAk4hwGJg8IG4jcLtkbB3O4uXV7VUH1Nhuaqt5vLys/kxi+iuAcQDAwKJQIBzdX1OyXwOwqb1qc9Cqf8khaQG7CFgH8CrP8GT0wxSALE/7jS01z4YC4RAz1qDnjXEpUBhvCokZ63a65p+LC9B9fgsGIneCea5pLS4u+5FE2m7Gk8TvisJ7yioCcGXS5/tWuT/8BAFNEHgWjA+8icR2KUpspr2jJPlGk5BHE+NogE/bCHwZkAEqvJ/XJSfQPT0pkjmjFrUyROHrkGH6qCEEAQs9Hs+CoBVeQZJ+19he9bzOBWeU1R3ukUUXMfgSAKc4OaAr2r7wuZAVvomB72d0IOOYIp/dNGtC3VlOS7MuVEJWuIqBz5nWMWhg/geI0hqAAMaMLDvyTLTgUe2aeugpybCgYvSK79veztnEOBvdv/uPo7vkRG86ALwDosdZ8hNJJNY+1LZIW43k/li7ddGeoBW+F8D8tIMZ5cGS8Niow+rrh/yRTzH4U4rD15vWv9E6qgbgab2+9QpQNGfDjuoDzL+pqPWOCBz1M2auZmDcAXd7PaVwGQQioJO4K2SF708S/WR9a9Vr+4c1tdS8PsMf+ZogfhQ9G0LMuLnyiJXrG96bszd1uCrRSjBMGYBbCbhHMjeUtpU+2V8R52xpbK3eeG5Z/We9Nq0FuSfowoSfEHL4rHU75zp6B9DFJd90dYkri3z2uXA3OFwcAknSFgF4+o733tpoTdyHwqzvW0SEswGcvd9YSPp8ADrRXQrTBthNInPphoHf65i3sbVqTdCKPAPnl/7ZjxfAfBY8P2SFXwP4bpZ8/972917KReTP9PHLx4mu5HQQzyVJ5zI4k4g6oxRJ+p9OwRcByLTD7+ftTl8dwPOc23ClMJg9bvH4hI1fuSfuXEJPQrFhDUv6CpA/A3A/Pc+jy3q+AADT/HWjh8kSAQAf7IzHe9dhMw2TuJ1YpjcAAR+G4euI4xbtojKABc9V/hvj3JbOyJSpY28tgc3/2+tb7dIjz2vecWijj+LAxKuZ+RrFqYsYqPQwT59RFv5yc0v13/e/0NxW9VgwEP4/MK7u+daRHbs7vgvgNykNQMlitYD8uaKAXLCNgNUArdoW69qg+4/kwZaarRWjV0yTns57AHxZ51ouOScKDLtw3c65Sh1yXFyGEg93zG8t90eu7Gkt7+JiHJ0pwLWolUGE30ZmHTBdXAqNjU2tVc/omZqYEf5vApr0zK8PBk4A6DoIuq7Ymrg7iMgmAjYy8E9J/DaE3Dxqx6gtDZjT1dfxs8ctHp+U4kgp8Rki8Xkwn4FE8mQQlEtLOYnV7VXtQX/kmyBek+mxzLg4aEVaozF8T4e2oQFTMrm0HuCxSsNJb8fawQILepRYze1h4Pxa1H4/02YKOjAR3afKaa2bH91oTXwPh3aiPQRiugRwkgHIBI5cpDh4t13kMxrhXmwPX4hedf+Y+X+bdyx8s8/BjK9nscRoIbG8FrWf7v25H2bTLzsFXwZgNAAQ0XenovbGlDWimmML/gHglSxEZMLrBP6phDg5Gqs+rDFWfVljrOrBfDnk63bObYvGqqaB6Rr0bi/p4lRsMF0TjVVVqLbHdnEZijS1Vd0FYCD1ZF1ccklOo/j74EXN87u4GIWJf6Vz/qZYdTMz7te5Rh4YCfCXGPyfAN8mGA8KW/wzbsU7g1a4M2iFW4NW+F89Xx8ErfDeRNLzAUt6hkBLwHwZgE+hEJ2/XkTbqtYSaGmWh18ZtCL/k0s9Q4mgFflvBleojmdgqUY5g4bS1pF/h3rxryOfChx5nk49g4Fa1EowL1cZy+BTK/xLTtatSZXysqVnAZioMpaZ712/bd5uzZLSQN/s9Y/3SkeW9mmmBnHTMBy4mb0HwCJITBUsPyVsHOPx0PGS5UwG/nbQ4Sc9XXbkAVmtq9ur2pnxh17fmjg8MOms9B1rmFeD6MS04zLjLQD3ArQqGluw0XyoOXG0Db8q94e3EGExgJFm9bj0QxsLXtDUUr0GqDKtxcXF8XgTiflJn+8FABNMa3Fx0Qkxb2CibHZNXVwcDwGvTWl9937d4XnCS5exzWdicDbJK0L3zzUYf7ZD6OKu7/nI9yUAR2d+NP93MBAuirZWq6ahuQAI+uvnAqjN4JB/7mhN/FGTnEFFA+bYQQ4/BsJspQMkXQ7gPr2qCh9biNs9zNeqjGXhmQvgR5olqSEzqHNOtEKjkrSExkROYXBvU+/3De/N2dvn4DEjTkSvHh3MvKqprea2Pkb+c/a4xc8mkp6t6NX0kW18AsCzB4xkug3EH/7eSMqvpO0SKT20Kt0YFQh4DYzrIeXnorHqY6Kx6v+MxqqeMm/+fURTW/WdEmIKwG4kgcNg4G8k5WebWmoyTmlwcRmqrO1Y1AKJb0B/9JWLi1FsLz9kWoOLizYI1+Qjna1xR9UHBFylex0X/TzUtminFKgEsC+rCRhXhwL1t9aiNu2zogsww7+kAkQRZBA9ysRXO6kmnNPhDLJaiDA1NCZyik49g4H1rVWvgfH39CMBZr4IYOPR0ZVYWUTA+UqDCTt2xBKPaJaUEhbynN7/toke6HesRxzYe4Pwl/7Grtl+6TZ0N5X56HgSh5S6aGqv2ozu4LueOflLaU/qzS3VfyfQ2+nG9QUBLwD8EwlxcmOs+pPRtur/irYvfC6bufJFc2zBPxDbfSqDb4Bbd9sJ2GBcvy+25azGdrfTr4tLpkTbq/9/e/ce32R99g/8c91JKodySFJQkYEHnHMq+MjmYeIEFdqkwiNzZc4DkATEZ06d29x0+mzddL+50/M4p3OdJgHxWPwpAm3S4gE3N4HJPMyzbCIggm3uFJpS2iTf6/mjBYrS9k6bu3eaXO/Xy9erSb/3fX/G2ia57u/3e70ANnfpmBBW69xLZavVOYQwwYu1Mf+ALc2t1f1hgOoH6nrCPB0bwtP1fT2emb61wTXhidnjqoZlM1e+KXOFSjXSVgBwZHBYXTQWkBlqGRjC9DgIbQaHE9v4LlMD5QvN8HYBEz3u8AwzoxjR7G4uB+A2MpYYj1pfZNfOOfAlY3PXbr2fGcmYcshjDa91N3bWkQ+OBTCy63Os1HvdDF938Es6xdBdHcX8mJFx6CiY/R1MNyubOrFW958e0QO3d+4lOGhEcH1bVA98j0mb2dfip8gGfo/B50Xi/tuy0dVNiEIViftvY6Da6hxCmIkAQ3vZCDGIKKX42wN9UdK069Cx95AY5CK6734i/kPvI7s1N72v6PmZJUHZSuQwvM7w5QSsAjA0g8N2p4HFZmXKVyubfE3EqDF8AOP8spKgsSXDhayNHwOMNWrrbAZiKWK63OjYNClLl/924M8f+JKwqceR4K4zAFN7i7U3uhtrS6UX4dAZx9vPadr2z26Gv931UEMFwGTK9lsAsW6+rQC8CPCNdrYfG9H9Z0bivl9229lkEInGFj6bcthO65wNKEvoBk4awO/sQ1L/EdUDL1kdRojBj5hQtBiHvgAIkVdS6XQIMnNf5JdldU2BbmcAmKW2ccF7ILoC8vuUF/bGtt2AfjQFY/CZdqZXPc6gJ4uxBjmmMnfoNiZejo79JTM4lK+t1/3bzMmV3xTI6KQkAICmtLsuGR0ebVaegcJQpi29jST8DQAMbaPC4LkV46szKXZn1ZyS4AgAXoPD/10XC/zdzDwGHdPl6509jiTqWgB8d90W32G3cPA6QxeD+Sefevp33W0VwsSNXR8bKgA+27wgxhqfC9Cf0VHw2wfws2B8i2x0TET3nxfRA3etjs/Pu+U39bvmt0T1wPdI47MJtNHqPPmOgL8oxVMjuv87q3cskbvPQmRJRL9yj41sMwFssTqLEGao3734AwB/tTqHEFnSmgY+/QZ/wERivpUA3WHV9UX2rENlyqHxZUb3+josxhgQ1Xhc4f8t9CXBc0qCI8pc4ceIcTsMfpbej0BLI/FADsxKGpxIb14FYLvR8Qw+rk3jUC7sXdcfBDrXzPMzY7nBoaNa9jbPNjNLT5KMuQAM/f0h4JGc6DVBB5vLMnO3BcDSkqqjwRjT5bhDbv5VoNpW6gyf53GFQkxYiUNvPLxcrBff3d25NUWZFwABINoYeDei+85PO+wjI7pvWEQPXBSJ+++rbfD1XMnME7WNgZdr9YVnA7hMlgWb4kNmXF6r+8634m63EIVgTWzBRxqr2QB0q7OIQxHI9A3+CwPfbnUCIbKBQLdYPUsooi/8CYAnrMwgsmNVY6DZnkqWAuhuiZgRBPB3Um2O1z3u0AXZyjaYeEaHzk8p7TUC5vXh8E22Ie3XZj1UAYng+jYQ/SrDw+Z63GFDnW5zkdcZvAaAqXt5O4Ymnwawx8hYJguXAWew/Ddlcfffw+npvT4px6ENQFRHAbCsJHhSmTP4YMKV2KUR/xmAD4Cty8g3HPb0xSsw7zMNQLqTcWen+l3zW3KimmoJ4ojuf5z15pMZ+C4IDVYnygNxZv5B60j6QjTuf7Rwf7aEGBg18UVvEMELYLfVWcRBivGi1RnyQUQP1PfUNU2IQYHwwpn6h7+3OgZArKWPuBrA+1YnySN7rHqvu7p5SaPDnp5JQLeb0BvCOAGMZ7zu0PLSkqqjsxQvp5WPethZ5gzfAw3PMfi4Ppxie0rjObK6KQtizX8C8FFGxzDuKHMGbzInkDmmosrhcYWqmOg+9KFmk4nVO5bsNbxXOMPjHRM+ysw8h3Oxe9kxAGYaHP73npptDCg++HmLCN3+u2mgUw45rHMGICntbuooun668QkT4SEtfcRXOzsCd0sRH3notUTGOpqE+P+3VWs9HkS3QmbT9MUeAu5QKTUpGg/8urs17kKI7KuN+TcA+ApAH1udRQBE/Ido3Her1TnyBUOTWYBiMGu2abS4u718BlrN7iviyqa8AGTPsiwg0I+tvP6qTxbvgo1mAPx6P09FzLhSU453PM7wD2cd+eDw3g8ZfCpQbStzBQPK1vYOEV+Lvn12jjPbytc2BnZkO18hiuD6NoB/k+lxRHSn1x0cFDMwS0uqjh7jsq8CcHUmxylK9/l1w6bxI0aHKsV9mQHbLymkL4XB3z/KcK9Ik32y/wsGd3vDhMGHFACL7OlXO77Bh6uR1DLRWbUx/1U1u6+I9xZAIxp7yOPeDhDdW9dwbSIS8/2/JCePB+E2+TBtiE7gn2rpI46t1f3/XbdnkRRPhbBARPe/pZTyAOjxrpEwF4GCw2MjrpfZz9kTjS18FkDY6hyDxLsEyD5vOYSYrlnT4MupGXd1DYs2p4FzITMB+4OZcU2t7vud1UFqG3w7VYpnANiQhdONBPGdtlTqgzJn8GaP66GRWThnDmDyuoKXJlyJ1wn0AICxvR5yeC0MLo/GF/S34Cq6aNW33QPg1QwP05jpHq8r9McKVGfWuGWAVKDa5nGHr9OU420ClWV0MKHBnhra57/RX27c9gIM3ughxoAvAyaG0eW/6aSmcqgAyF06+dI5PQz8Ypevd+6f1cegRz81rqV1JF0ajfmMNzhh
+nyXR7vthg8U3XomvmQ3gJ9XovIXG5wTy4n4egYusjpXjlnPoP8ZoQ9/OpM16kII89Q1BV6bWRI8w56m1SCcYXWeAtMO4Lpa3fcnq4PkoyQnb3SQ40IAE6zOkqsIeCetJS+gdNFckvpzbmDcUxv3GZ2FMaDqdf8275jwVznNzwA4pdcDRFcKwH9F4/6c+Xtft2eRPqckODOltEcZXN7vEzLGENEvgPYfeZyhZWzje6KNgXezEHVAeXD3Eewe/k2Nw99h0JR+ni7BpF0SjS18KSvhMqDS8Ja5wibNOFRHA9b21FiHypRXCy5mRetx6H5ovWJgScKVmFpG4W9lVEQxFZPXHZ6T4OafgWly7+M/Y5/GuMTIbLDuVKJSeSn8MDPfbGD4l8rd959cE1v8dl+vl4nSMQ9MQhpnGhvN63Jqti3TKyBc1vlo4ix3+AufXZ7MBIS7FADpwA2Ds+MfVm9wfe4W4MDPxfBhzXwjgF8YjgD+apeHm6QAmEWVqFSIYzWA1WWu4DkEWoyOTWLzclp8rwhtzHhaAz1Qqy98Rma4CJF71jYGdlwyOnxhG6knALrQ6jwFYgcIV0Vi/uesDpKvnokv2e0ZHZoPDWsBOKzOk2sIeA02KqtrWLKzzCmTJXPEE2fFt94QsTpFD2obfDs9rvvLANtzAE60Os8g0cxMV0fjvhyakdJhVWOguRKVc9Y7J9xBhJuRnarOCBC+TYquLXOG1gEIjRhe/P9XbJ/XmoVzm6bMuWwykL4MBD8xjuz3BxZCA4PKo7GFlhSYGHyXeSW63GioW9sYeNnjCt0F4Ht9OPxLxLy+zBUKKeBnVjVcqkC1LeFs8YLC/82ML/fx31Yxk68m7vtbf/Mw83IARgqASCvbVQAGpLmKltYuh8F/HEJuNf8gUITBB5q4aEpdAuDOrmNmucLjAYw8eAy/uf/rSlSqMg7fQsQ1+59jxi0zS4LLjBQ6S90PnAnG8QeOBdbIEmCTRPXASxHd7weKxhHzf3VuSp62OtcAYADrAb7R3p4cH9X936jVfWul+CdE7lrZ5Gtq1beVgfArdPwOC7Mwr7Qnk1Ok+Ge+SJP/BYCusTpHriFQzV5b67TaBt9Oq7OIA56DnrgyV/b960lEX7zdofFUMK+0OssgsMHO9lNzsfi3XyUqVTTu/xGDvoHsNgcjIswgwvLE3sQOryv0iMcdnD/ryAf7upQ2qzr39jvH4wr/zOMKvUmUfo0ItwA4steDe8PYbNPo3NyZXZa/PtGTt4Cxro+HawQssgH/8jhDy7zO8GnZzNaT0pKqoz3u0K0JV+JfIF4F4Mt9PJUiYEm2/sZEdP9bADYZGUuEKypROVC1JKPLf/e1c/JJU5NkqDbu+ycYm/c/JtKurxhfPbTrGPunG4CA3uj6OBr31X7qNXeEQ2mGZpSTom93eaig6CmZAWiyiH7lHgB/BPBHT3FoDBfxHCK6BIwLAQzt5fDBIgngLyA8ZYPtqTWxBZl1ZhJCWG4dKlOI4Yded+hvzAgDcFqdKc9sYeLvRvXAU1YHKSQR3Rcqc4YmdX6wK3gE3D1cH/7dWvgG/Q1Jxfy+RrkxE6VfCK+Ai+Z2bGw/OKxqDDRXoPrrCVfiTgDftzpPjgqnHfbrIrvmt1gdxIio7lsxa9T9L9tstkcAnJ3l049m4Jtg+qYtmVJeV+ifDKwjwvMpu/2l+l3zP+n9FP0zHZX24SXHTlHMX2HmaQkkLiKQK9v3PAlUU8S4cmWDrymrJxaHtQlLkhemln29yJ5eD8KkPp7GAcJ8Bs/3uIKvM9EKYjzZWQzLmlLX0lM0VuXQ4IXCuQD6W4dRDL46ogeC2ci3H4GWM3iqgaET1pdM/Coa+1yANcRbEvwSK5xkcPiazq3ZcgoR3cPguzoe8dGJ1pZFAH6///sMdUrXCY5EB2cA7pey4Vq7wgwAozqO4XKPK3R1RO9+a4ly5wOnKqLLDjzBWBNt8m2RAuAAiiT8DQCCAIKzx1UNS7c6LmANXjC8ACZaHC9THwF4hkE1KW6vz8VfNiFE5mpj/qc9rvsnA/YgwLOszpMHmgH8pnhY8a9zfQlUvorGfbd63GEbGD+wOouFdGK6Llf3l+uLuviiGo8zfDOIf4FcWZOWufX29uTs1c3+PVYHydQKzEtDx01eZ+gFJjyEzg8lAm8y8zXReOBFq4Nkqn734g+mo/K8Ia6JtxLxLWAcYcJlNAamAJjCjBtsyRQ8rtBOgF5nqDdA9CGBtirirZpKf1I8bFTM6GtnxfjqoYnmveNYSx+tQZvAxJOIcCIzJgE4TSk1HDDtj4Vi0M/O0j+8fTDM5M0nzzYviM1yh2fbmF9A35u1dKLJxJgM4HaPKxQH8DIRbQLwllLqA7tm/2BNbP6O7le2MZWPemR0ypYcp0GdCsZpIHwRwFRATQAhWzXnVmJaFIn7s/6annLYHrUlU7+BgQIlKb4KMLcACEVGZ/8BlFvLf/ezayqUZLoVjDEAAOY7Lh4Tjh5s+EVdG4Cwnfgzxee1jYEdZa7g9zqbEnUehrs9rvDrEd23/tPjK1Bd1EItQYAPbIPD4F93HCZyQumYByZRSjsboLMJfA4Ik9H/OwPZQWgD458gepkV/xVML0abfFusjiWEMBOTxxm+BoRfQD7Y9UU7mKvSRY47BmJ2AwB4XKFfI0dn4xDoO1Z3v/S4Q98G424U2HsfZl5uU0Nu6G5z8DJn+FtEfO9A5+pVO8Z23jjtkdcZvpyJl2KQ7fXIQDXpifmDaeZfd8qcyyYTpZcBON3qLBZKgvnXxcNH3JEPN3u8Jcs+zyr1hxzZG3gvgBiAJAi7wehaYNu/WsEFYPSAJ+vwtgYsqtH9/d6DrSfe0eHTWeNXzLxGNhH4p7V6oHKgrldWEjyJFNXD7OZfHZ+L9wK0D+D9v+tF6HivPMLUa3fYpmna3JrGhYaW6vaF1xVeY7A5UCyi+0vMylGBalvCldgKYJyB4XHoiaNz9TW1zB1aQIylXZ56tXhY8VdWbJ/X6nGFXgawf9bllojuP67b87hCj1NHj4lO9DHSdF5k98J/7X+mEpXaRtfEIIMXdjn08YjuvwzIlQKTQF3Dos0ANgN4COio2u4Z3XwyEX0RwGkEPhlEJwI4AcAQk2KkAP43M71NGt5l8NtaWnt1V1P7m5uwJGnSNYUQOYk4Esd95aMefoxtbZUMfAvymmFEI4Hv5Xa6N5II9Fq8EAMnEvPfU+YMNRHhPgDFVucZAI1M+H5UDyyzOoiZauO+R7yusM7ghwC4rc5jUGifvnXJOlSmrA6SDdH4gtenourMsW7HD8C4Dea9T81JBKpJg35YF1/4JvrcgzO31DYueA/ARWXO8GVEfCesXak0rPO/XNulOAnGrxBP3F6To0WHQhJtDLw7yxWaZgfqGfiCaRfqmBl7hCU/jIQX0nb7vIjJN5YV8XpiGCkAfmBmjj3uxAyNDRX/APATuVr8A4BozPegxx2+FIzZnU+d3rK3ZZ3HHXoejDP2jyPQZ5b/dpXi5NUOzTEVjBM6nuGjyYa1pa6ls+v0hW9WjK8eurE18SdmvvLAQYQGG2wHmuXIh7kctQLz2tGE1wC8BuDRrt+72L3sGJVOnqDINk7TlJuZ3AS4QXD1NF1fAUxEOiuOAxzXiOLMtEuz0Y4U2nac0/jxLpm2LoToqnPW0A3ekuByVnQHgFKrM+UiAl5ThBBx0dLajr1fRQ6Kxv0Plbvv36TYVg3gVKvzmKSVGXelkPzlM3phbM9Rq/ui3tEPTIVmq2bwmVbn6UErE26Oxny/z7fmaJuwJIkYfj6zJBi2pXEnEV1ldSaTKWZ+mMn2yzp9YY8f2AazaNz3WMX46qcTrS03gvlmDMwMp5xHoBqi1E01+uK3rc4iDqrX/dvKRz38FdjaqhiosDpPFjWD6NazYh/eOyCf1RUuMLZWgk1tcKSx4eYfgMrN5b8HESdV1VUOcmwAOvY0ZPCZYBzynoWJ3zjs4Z2eiS/ZXTo6eKmm0YvovJnN4OM08CseV2hDYm9iEoCjuhySBvOVa/SDPRoKahmMEEKI/ilzBqcR6HYQpludJQc0gvGYsiFc1+j/h9VhZAmwcRXjq4cm9rbcAvBNyJ/ZSmkADwLpH0f0xduNHjTYlwB3VYHqooQ7cTsY30Xu3eTewBoviDYG3rU6yEDwusIzGfxjANOszpJtDI5qRJW1Mf8Gq7MMpAtHLHMXOdLXA7gOhdso7J8E+l6t7ls70BeWJcCZ8bhCXwfwJwzyn1VmXl7kUDet+mTxroG4Xvmo0PHKhs3ovU6UJhuNr23w7TQjx+xxVcNS+xw7YeCmA4E+qNUXnjAYbqzNdj44IUWp5wEcf7jvE9H82phveW/n8bpD/8mMJwH01Ik5CeCqiO5/vOuTA9W6WQghRB6IxgMvRuL+GUx0JgPVAPJiCVsG9gJ4nBizP9GT4yJx/3W5UPwTmVmxfV5rRPf9WEvjFDCvtDpPPyXBeFBBmxLR/f5Min/5ZgXmtUdi/h9qmnY2daygyAUtRPhRq751WqEU/wCgVvetjej+81ijGQCeszpPFuwlUBBKnRHVA55CK/4BHc0WIrr/Jw6NJwK4CYzNVmcaOPxXEM09S996uhXFP5G5iO5/QkvjSyA8AmAwrnB7lYm/Fo0H5g9U8Q8A2I5vwMAkMWb82aziHwCk9jm8MDjjmIlXDIbiHwCsjs/fmgamE2jj4b5PSL1s5Dy1Mf/TTFQBYN9hBxAaAL7408U/IPfujgohhBgEojHf3wF8wzv6gYnQyMegq9DN3aw88C5AEQZH942kF9Zt8R3+xVZ0SxHn5Buzmt3+fwOYW16ydKpS6lYA/4nBc3N0O5gfBKn7IvHCLfodTk3jwk1TUfXlse6ia8B8K4AjLYiRIiCY1pI/rWtc8rEF188J0UbfOgDryl2hryjQd0F8sUndZc2yCUTLtFTRQ9010ik0qxoDzQB+A/BvPe7wDDAvBugS5M9s6v2SAK1iqN9G9cBLABCxMEwaijVZvJeRztf4K0pHB39l07SfG2xsYbXnFKv/qYsHaq0oajHD0PYNRPRo76P6xfDyX5XmrHdDNlO9pgI7qAAACe1JREFU7t82FVXTxriKfkTgG7B/liphdU3M+LYC0ZjvSY9z6UWAWgrCpM6n2wm0XIP2k67LfruSvyJCCCGygKnUuXSaBp5HROUM7raD1SDwIYGeZ1LPp5mer9f926wOZERZSfAkKG2y1TkOx07a39bEDv9GJJeUupaeYoO6mjs6rB3V6wEDr5FAaxT4sRF68TMrMC/d3xPm0xLgw5k+5t7iIWrod4hxIzo6hZqtHcBTaaLK+pjvnQG43qByyejw6HaNv86EK8E4D7lZcH8TjJUa1GM18UU97sckOkw/Njxk6G7MZKgKIpqLwdtoiQl4lomXJ1Xq6WfiubOPasX46qGJlubboJHN6ixGKKgn62KLDjvLySrl7vtPVmxbAmABrOsafTgxEKopTX+qbfK9alWIMnf4y8Tc+/9nhDYtdcTRZt0UKR/1sFPZ2z42eLPojYjuP82MHANhTklwRDKtTSfCvl16+7q+NF6djkr7ESUTJhNrTqa2t3q76SgFQCGEEFlX6lp6igblAeH8zg95o6zO1A0d4FeYaSNptDFFauPaxsAOq0MJa1Wg2tbiarmAoSoAKgUwwaIo7QA2gvnPDERGxEe8lI2iX1f5XgDcb/a4qmHpfY7LAXybgSnZOu9B/B4zHlBFjmX1JndozBezXKHP2UEVTDwdjGmwbq+uPSC8AObnlI3X1DUsKqClrdl3kbNqlIMcMwF4O/+zYgaucYQ2KLzEGp4lxpMR3f+W1ZGEuWaPqxqWbiu6FMweJlwExpgBD0FoAGMNmJ4qjg+vW4F57QOe4VM8zuDdILqu14HMKyPxwFyzcnhdoUUM3G9kLDPfEo0H7jQrSz6SAqAQQghTVaDatrdk7+nptPoSaXQ6mKcAOA0DN0OgFcAHDN5KoK0MvKOB3khr7W8U8tI8YVxZSfAkYm0WM08j8OkATUL2Zy61A3iXmV8F0Suk8I/i4uKNK7bPa83ydQ5RKAXArkpLQmdoDA8zvAScBSDzGTWENlb4G8D1NpttbU3jgn8Mlj2IclElKrX1zuNOJU2dT8znMXgKQMcCKMrypfYCeAvgV8D0itLUprbY9n+sQ2Wh7Wc7QJi8zqWnAupcBp0DwjkATrQ41G4QXgWwAczP2oekXly9Y8leizMJi1SiUnupZMLpmuIZIDoDjP8A8Hn05XWhZ1sBbAR4PQN/G6GP2JjtG3r9MRVVjrFux0dGiqEE/katHqg2K0uZM/QcEWYYGMqk1HG1TYs+NCtLPpICoBBCCEvMLAmOc6R4Emu2SQCOZYaLNHYys4tATgB2gEcA1HW/2iSARMeX3ARQGwEtDDQT8T5m2sXgj5h5J8GxjZLpj80qIojCNX3MvcXD00MnpxnHE+EogI4B8VhijFXAMAKGARjZ5ZAWdBT4WgE0gLATjAZm2kWkNqfT6v1Ru0dtteLDQCEWALvyuB4aCU6dBqjJRJjChHHMcBO4BCA7Ac0A9jBhNzG9DfDbaVJvFh2RfkOKBuaqQLWteXTL59jGk0jhBI3oBAV2asAo7li+NwIdv2f7955rA7AX4H1gNEDTdoL5E2bsIA3vpxnv1+u+7VKotZbH9dBIovaTFfOpAL5ITJMAjAdhPICxWbzUTgDbCNiGjqLvq5SmV2p2+z6QnwHRk9njqoa1t9lOtTF9ThEdQ8A4VjyOSDuSwBp3/M0Zun88gdIA72EgSaBdivljaNgJ0HYobbNj6L7Nuf56UVYSnEOKnjYwtLl4WPGRZt2c9LjuHw/YPoSBm6wE/KVW93/VjBz5TAqAQgghhBAFqtALgEKI3DH92PCQIU04iqFGaaDRZMNoBo8C0xAidrDSDl05QBwHAAI3KWhMxDGbRtvSDc1bI7i+zZL/EUIMQh5X6EkARpb1hiO6329aDmf4hyA2uKSXro7oPkNLhcVB0gVYCCGEEEIIIYSl1m3x7QOwxeocQhSS2SOqSlKAoQ7JBJO7/xJfYWwc2rRU0ROmZslTudh5SwghhBBCCCGEEEKYKGkvmgdj+61+dKb+4bNm5fA6w6ehY4/w3imOmNWFON9JAVAIIYQQQgghhBCiwBDxVQZHrqhEpTItiIbLDY8leti0HHlOCoBCCCGEEEIIIYQQBaSsJHgSgLONjFWUNm35byUqNWY2WgBsah1Ja8zKku+kACiEEEIIIYQQQghRQEhpxvbcA79XF1u00awcLzknngtggsHhT3XuFyr6QAqAQgghhBBCCCGEEAWiEpUawPONjabHzMyiZbD8l0mT5b/9IAVAIYQQQgghhBBCiAKxcfT4aQAmGhmbJvO6/1agugjM8wwO/+js2JbnzcpSCKQAKIQQQgghhBBCCFEglKYZbP6BTfUx3ztm5Ug4W0oBuIyMZfDjpjYiKQBSABRCCCGEEEIIIYQoALPHVQ0jwOCsOzZt9h8AgNjgPoQAa9L9t7+kACiEEEIIIYQQQghRAFL7HLMBjDQwNJ3SYFoBcE5JcASA2QaHv1nX6P+HWVkKhRQAhRBCCCGEEEIIIQoAgQwt/2XGn9c2BnaYlSPF2iUAhhnKQjC1EUmhkAKgEEIIIYQQQgghRJ7zjgkfxeBSI2M1wiNmZmE2vPyXbSlzsxQKKQAKIYQQQgghhBBC5DlOq8sA2HsdSGgrUvSEWTnmjL3/SAAXGRy+vma3/99mZSkkUgAUQgghhBBCCCGEyHdsbPkvFEdWNvmazIqRTNvnAbAZGUvE0vwjS6QAKIQQQgghhBBCCJHHvM7waSCcYWQskXnNPwAAxpf/JrmNqk3NUkCkACiEEEIIIYQQQgiRx1jjKw0O3b13pLbKrBzekmWfB3CWweFrIwl/g1lZCo0UAIUQQgghhBBCCCHyVAWqbWAYKwAynl63xbfPrCys0pcZHUtMsvw3i3rf/FEIIYQQQgghhBBCDEoJd+J8MMYZGkz4pNQdMtqgIyM2JjuD/QaH77Xb1GozchQqKQAKIYQQQgghhBBC5ClWvJCIjA7/vsb4vik5wMYHEz21qtHfbEaOQiVLgIUQQgghhBBCCCHy0PQx9xYT0deszpExpWT5b5ZJAVAIIYQQQgghhBAiDw1VQ74GYLjVOTK0qzW+ba3VIfKNFACFEEIIIYQQQggh8hAxXWV1howxVqxDZcrqGPlGCoBCCCGEEEIIIYQQeWaWK/Q5Bi6wOkfGSLr/mkEKgEIIIYQQQgghhBB5xsZ0OQZf3ef9iO5bb3WIfDTYfhCEEEIIIYQQQgghRG+I51sdIXP0mNUJ8pUUAIUQQgghhBBCCCHySGlJ6AwAX7Q6R6bShEeszpCvpAAohBBCCCGEEEIIkUc0NQibfwCb6mO+d6wOka/sVgcQQgghhBBW4T0A4lan+BRGUVGb1SGEEEKIQY25hQgrrI5hlAKYFP5gdY589n+nAGWVAzUNRQAAAABJRU5ErkJggg==\",\"backColor\":\"#FFFFFF\",\"borderRadius\":3,\"borderStyle\":\"solid\",\"borderColor\":\"#000000\",\"originalWidth\":1280,\"originalHeight\":194}"); workbook.Save("ShapeChartPicturefromjson.xlsx");Please note:Shape, chart and picture use the same IShape interface for importing or exporting json string. However, it is necessary that the json information matches the caller's type. For example, if IShape is a chart, and json contains a picture, using IShape.FromJson could cause some unexpected error.When the shape type is a slicer or comment, the FromJson and ToJson methods of ISlicer and IComment interface should be used.RangeRefer to the following example code which uses IRange.FromJson method to update a range from json string.C#//create a new workbookvar workbook = new GrapeCity.Documents.Excel.Workbook();IWorksheet worksheet = workbook.Worksheets[0];worksheet.Range["B2:D4"].FromJson("{\"0\":{\"0\":{\"value\":1},\"1\":{\"value\":2}},\"1\":{\"0\":{\"value\":\"aaa\",\"style\":{\"backColor\":\"rgb(173,216,230)\",\"font\":\"normal normal 11pt Calibri,sans-serif\",\"foreColor\":\"Text
1\",\"themeFont\":\"Body\",\"borderLeft\":{\"color\":null,\"style\":0},\"borderTop\":{\"color\":null,\"style\":0},\"borderRight\":{\"color\":null,\"style\":0},\"borderBottom\":{\"color\":null,\"style\":0},\"borderHorizontal\":{\"color\":null,\"style\":0},\"borderVertical\":{\"color\":null,\"style\":0},\"locked\":true,\"hAlign\":3,\"vAlign\":2,\"textIndent\":0,\"wordWrap\":false,\"shrinkToFit\":false,\"formatter\":\"General\",\"quotePrefix\":false}},\"1\":{\"value\":\"bbb\",\"style\":{\"backColor\":\"rgb(173,216,230)\",\"font\":\"normal normal 11pt Calibri,sans-serif\",\"foreColor\":\"Text 1\",\"themeFont\":\"Body\",\"borderLeft\":{\"color\":null,\"style\":0},\"borderTop\":{\"color\":null,\"style\":0},\"borderRight\":{\"color\":null,\"style\":0},\"borderBottom\":{\"color\":null,\"style\":0},\"borderHorizontal\":{\"color\":null,\"style\":0},\"borderVertical\":{\"color\":null,\"style\":0},\"locked\":true,\"hAlign\":3,\"vAlign\":2,\"textIndent\":0,\"wordWrap\":false,\"shrinkToFit\":false,\"formatter\":\"General\",\"quotePrefix\":false}},\"2\":{\"style\":{\"backColor\":\"rgb(173,216,230)\",\"font\":\"normal normal 11pt Calibri,sans-serif\",\"foreColor\":\"Text 1\",\"themeFont\":\"Body\",\"borderLeft\":{\"color\":null,\"style\":0},\"borderTop\":{\"color\":null,\"style\":0},\"borderRight\":{\"color\":null,\"style\":0},\"borderBottom\":{\"color\":null,\"style\":0},\"borderHorizontal\":{\"color\":null,\"style\":0},\"borderVertical\":{\"color\":null,\"style\":0},\"locked\":true,\"hAlign\":3,\"vAlign\":2,\"textIndent\":0,\"wordWrap\":false,\"shrinkToFit\":false,\"formatter\":\"General\",\"quotePrefix\":false}}},\"2\":{\"0\":{\"style\":{\"backColor\":\"rgb(173,216,230)\",\"font\":\"normal normal 11pt Calibri,sans-serif\",\"foreColor\":\"Text 1\",\"themeFont\":\"Body\",\"borderLeft\":{\"color\":null,\"style\":0},\"borderTop\":{\"color\":null,\"style\":0},\"borderRight\":{\"color\":null,\"style\":0},\"borderBottom\":{\"color\":null,\"style\":0},\"borderHorizontal\":{\"color\":null,\"style\":0},\"borderVertical\":{\"color\":null,\"style\":0},\"locked\":true,\"hAlign\":3,\"vAlign\":2,\"textIndent\":0,\"wordWrap\":false,\"shrinkToFit\":false,\"formatter\":\"General\",\"quotePrefix\":false}},\"1\":{\"style\":{\"backColor\":\"rgb(173,216,230)\",\"font\":\"normal normal 11pt Calibri,sans-serif\",\"foreColor\":\"Text 1\",\"themeFont\":\"Body\",\"borderLeft\":{\"color\":null,\"style\":0},\"borderTop\":{\"color\":null,\"style\":0},\"borderRight\":{\"color\":null,\"style\":0},\"borderBottom\":{\"color\":null,\"style\":0},\"borderHorizontal\":{\"color\":null,\"style\":0},\"borderVertical\":{\"color\":null,\"style\":0},\"locked\":true,\"hAlign\":3,\"vAlign\":2,\"textIndent\":0,\"wordWrap\":false,\"shrinkToFit\":false,\"formatter\":\"General\",\"quotePrefix\":false}},\"2\":{\"style\":{\"backColor\":\"rgb(173,216,230)\",\"font\":\"normal normal 11pt Calibri,sans-serif\",\"foreColor\":\"Text 1\",\"themeFont\":\"Body\",\"borderLeft\":{\"color\":null,\"style\":0},\"borderTop\":{\"color\":null,\"style\":0},\"borderRight\":{\"color\":null,\"style\":0},\"borderBottom\":{\"color\":null,\"style\":0},\"borderHorizontal\":{\"color\":null,\"style\":0},\"borderVertical\":{\"color\":null,\"style\":0},\"locked\":true,\"hAlign\":3,\"vAlign\":2,\"textIndent\":0,\"wordWrap\":false,\"shrinkToFit\":false,\"formatter\":\"General\",\"quotePrefix\":false}}}}");//save to an excel fileworkbook.Save("rangefromjson.xlsx");Please note: When IRange.FromJson is used, the range can only be a single area (like Range["*A1:B2*"]). Otherwise, a NotSupportedException would be thrown (when Range["*A1:B2, C3:D4*"]).The cell position in json is treated as a relative position when using IRange.FromJson. If range is "B2:C3", the first cell data in json would be set to "B2" regardless of the cell index in json.If the position of cell in json is out of the range, the data is lost. SlicerRefer to the following example code which uses ISlicer.FromJson method to update a slicer from json string.C#var workbook = new GrapeCity.Documents.Excel.Workbook();object[,] sourceData = new object[,] { { "Order ID", "Product", "Category", "Amount", "Date", "Country" }, { 1, "Carrots", "Vegetables", 4270, new DateTime(2018, 1, 6), "United States" }, { 2, "Broccoli", "Vegetables", 8239, new DateTime(2018, 1, 7), "United Kingdom" }, { 3, "Banana", "Fruit", 617, new DateTime(2018, 1, 8), "United States" }, { 4, "Banana", "Fruit", 8384, new DateTime(2018, 1, 10), "Canada" }, { 5, "Beans", "Vegetables", 2626, new DateTime(2018, 1, 10), "Germany" }, { 6, "Orange", "Fruit", 3610, new DateTime(2018, 1, 11), "United States" }, { 7, "Broccoli", "Vegetables", 9062, new DateTime(2018, 1, 11), "Australia" }, { 8, "Banana", "Fruit", 6906, new DateTime(2018, 1, 16), "New Zealand" }, { 9, "Apple", "Fruit", 2417, new DateTime(2018, 1, 16), "France" }, { 10, "Apple", "Fruit", 7431, new DateTime(2018, 1, 16), "Canada" }, { 11, "Banana", "Fruit", 8250, new DateTime(2018, 1, 16), "Germany" }, { 12, "Broccoli", "Vegetables", 7012, new DateTime(2018, 1, 18), "United States" }, { 13, "Carrots", "Vegetables", 1903, new DateTime(2018, 1, 20), "Germany" }, { 14, "Broccoli", "Vegetables", 2824, new DateTime(2018, 1, 22), "Canada" }, { 15, "Apple", "Fruit", 6946, new DateTime(2018, 1, 24), "France" },};IWorksheet worksheet = workbook.Worksheets[0];worksheet.Range["A1:F16"].Value = sourceData;ITable table = worksheet.Tables.Add(worksheet.Range["A1:F16"], true);ISlicerCache cache = workbook.SlicerCaches.Add(table, "Category");ISlicer slicer1 = cache.Slicers.Add(worksheet, "cate1", "Category", 200, 200, 100, 200);//update slicer from jsonslicer1.FromJson("{\"name\":\"cate2\",\"x\":400,\"y\":100,\"width\":133.33333333333334,\"height\":266.66666666666663,\"dynamicMove\":false,\"dynamicSize\":false,\"sourceName\":\"Product\",\"nameInFormula\":\"Slicer_Category\",\"captionName\":\"Category\",\"columnCount\":1,\"itemHeight\":23.666666666666668,\"showHeader\":true,\"sortState\":2,\"style\":{\"name\":\"SlicerStyleLight2\"},\"tableName\":\"Table1\",\"columnName\":\"Category\"}");//save to an excel fileworkbook.Save("slicerfromjson.xlsx");Please note:ISlicer.FromJson method cannot be used for filtering because the filter information is not stored in slicer's json (based on SpreadJS design)If the slicer in json has the same name as an existing slicer, an exception is thrown.CommentsRefer to the following example code which uses IComment.FromJson method to update a comment from json string.C#var workbook = new GrapeCity.Documents.Excel.Workbook();IWorksheet worksheet = workbook.Worksheets[0];IComment comment = worksheet.Range["A1"].AddComment("Comment1"); //update comment from jsoncomment.FromJson("{\"text\":\"Comment Test\",\"location\":{\"x\":595.666666666667,\"y\":259.666666666667},\"width\":100,\"height\":80,\"fontFamily\":\"Tahoma\",\"fontWeight\":\"bold\",\"foreColor\":\"rgb(165,165,165)\",\"backColor\":\"rgb(255,255,225)\",\"dynamicMove\":false,\"dynamicSize\":false,\"borderWidth\":1.33333333333333,\"borderStyle\":\"solid\",\"borderColor\":\"rgb(0,0,0)\",\"zIndex\":0,\"rowIndex\":0,\"colIndex\":0}");//save to an excel fileworkbook.Save("commentfromjson.xlsx");Defined NamesRefer to the following example code which uses IName.FromJson method to generate the defined names from a json string.C#var workbook = new Workbook();var worksheet = workbook.ActiveSheet;//generate INames from jsonworkbook.Names.FromJson("[{\"name\":\"Test\",\"formula\":\"100\",\"row\":0,\"col\":0},{\"name\":\"Test2\",\"formula\":\"200\",\"row\":0,\"col\":0}]");//INameIName name = worksheet.Names.Add("temp", "test");name.FromJson("{\"name\":\"Test3\",\"formula\":\"Sheet1!H8\",\"row\":0,\"col\":0}");//save to an excel fileworkbook.Save("definednamesfromjson.xlsx");Page SetupRefer to the following example code which uses IPageSetup.FromJson method to update page setup from json string.C#var workbook = new Workbook();var sheet = workbook.Worksheets[0]; //update pagesetup from jsonsheet.PageSetup.FromJson("{\"bestFitRows\":true,\"bestFitColumns\":true,\"showBorder\":false,\"showColumnHeader\":33,\"showRowHeader\":17,\"headerLeft\":23,\"headerCenter\":14,\"headerRight\":66,\"footerLeft\":22,\"footerCenter\":11,\"footerRight\":12,\"headerLeftImage\":51,\"headerCenterImage\":23,\"headerRightImage\":12,\"footerLeftImage\":63,\"footerCenterImage\":21,\"footerRightImage\":12,\"margin\":{\"top\":80,\"bottom\":80,\"left\":30,\"right\":30,\"header\":20,\"footer\":40},\"paperSize\":{\"width\":850,\"height\":1100,\"kind\":1}}"); //save to an excel fileworkbook.Save("pagesetupfromjson.xlsx");Protection OptionsRefer to the following example code which uses IProtectionSettings.FromJson method to update protection settings of a worksheet from json string.C#var workbook = new Workbook();var sheet = workbook.Worksheets[0]; //update protection settings from jsonsheet.ProtectionSettings.FromJson("{\"allowSelectLockedCells\":true,\"allowSelectUnlockedCells\":true,\"allowSort\":true,\"allowFilter\":true,\"allowResizeRows\":true,\"allowResizeColumns\":true,\"allowEditObjects\":true,\"allowDragInsertRows\":true,\"allowDragInsertColumns\":true,\"allowInsertRows\":true,\"allowInsertColumns\":true,\"allowDeleteRows\":true,\"allowDeleteColumns\":true}");//save to an excel fileworkbook.Save("protectionoptionsfromjson.xlsx");Data ValidationRefer to the following example code which uses IValidation.FromJson method to update a validation from json string.C#//create a new workbookvar workbook = new GrapeCity.Documents.Excel.Workbook();IWorksheet worksheet = workbook.Worksheets[0];object[,] data = new object[,] { {1, 10 }, {5, 20
}};worksheet.Range["A1:B2"].Value = data;//update validation from jsonworksheet.Range["A1:B2"].Validation.FromJson("{\"inputTitle\":\"tip\",\"inputMessage\":\"Value must be between 5 and 20.\",\"type\":1,\"condition\":{\"conType\":0,\"compareType\":1,\"item1\":{\"conType\":1,\"compareType\":3,\"expected\":\"5\",\"integerValue\":true},\"item2\":{\"conType\":1,\"compareType\":5,\"expected\":\"20\",\"integerValue\":true},\"ignoreBlank\":true},\"ranges\":\"A1\",\"highlightStyle\":\"{\\\"type\\\":0,\\\"color\\\":\\\"red\\\"}\"}"); //save to an excel fileworkbook.Save("datavalidationfromjson.xlsx");Refer to the following example code which uses IValidation.ToJson method to export the validation to json string.C#//create a memory stream to store jsonMemoryStream outputStream = new MemoryStream();//create a new workbookvar workbook = new GrapeCity.Documents.Excel.Workbook();var worksheet = workbook.ActiveSheet;// Create a validationworksheet.Range["C2:E4"].Validation.Add(ValidationType.Whole, ValidationAlertStyle.Stop, ValidationOperator.Between, 1, 8);IValidation validation = worksheet.Range["C2:E4"].Validation;validation.IgnoreBlank = true;validation.InputTitle = "Tips";validation.InputMessage = "Input a value between 1 and 8, please";validation.ErrorTitle = "Error";validation.ErrorMessage = "input value does not between 1 and 8";validation.ShowInputMessage = true;validation.ShowError = true;//export validation to jsonstring json = worksheet.Range["C2:E4"].Validation.ToJson();StreamWriter writer = new StreamWriter(outputStream);writer.Write(json);writer.Flush();Please note:When IValidation.FromJson method is used, data validation in the current range is cleared first and new data validation is then applied at the current range.The usual usage of IValidation.FromJson method is like: sheet.Range["A1:B2"].Validation.FromJson("...\"ranges\":\"C3:D4\"...");where GcExcel API and json data both provide the range information. When applying data validation, the former is applied and the latter is ignored.Conditional FormattingRefer to the following example code which uses IFormatConditions.FromJson method to update conditional formats in a range from json string.C#//create a new workbookvar workbook = new GrapeCity.Documents.Excel.Workbook();IWorksheet worksheet = workbook.Worksheets[0];object[,] data = new object[,]{ {"Name", "City", "Birthday", "Eye color", "Weight", "Height"}, {"Richard", "New York", new DateTime(1968, 6, 8), "Blue", 67, 165}, {"Nia", "New York", new DateTime(1972, 7, 3), "Brown", 62, 134}, {"Jared", "New York", new DateTime(1964, 3, 2), "Hazel", 72, 180}, {"Natalie", "Washington", new DateTime(1972, 8, 8), "Blue", 66, 163}, {"Damon", "Washington", new DateTime(1986, 2, 2), "Hazel", 76, 176}, {"Angela", "Washington", new DateTime(1993, 2, 15), "Brown", 68, 145}};worksheet.Range["B:C"].ColumnWidthInPixel = 80;worksheet.Range["A1:F7"].Value = data;//update conditional formats from jsonworksheet.Range["E2:E7"].FormatConditions.FromJson("{\"rules\":[{\"ruleType\":13,\"ranges\":[{\"row\":1,\"rowCount\":6,\"col\":4,\"colCount\":1}],\"iconSetType\":5,\"iconCriteria\":[{\"isGreaterThanOrEqualTo\":true,\"iconValueType\":4,\"iconValue\":33},{\"isGreaterThanOrEqualTo\":true,\"iconValueType\":4,\"iconValue\":67}],\"priority\":2,\"icons\":[{\"iconSetType\":5,\"iconIndex\":0},{\"iconSetType\":5,\"iconIndex\":1},{\"iconSetType\":5,\"iconIndex\":2}]},{\"ruleType\":1,\"operator\":6,\"stopIfTrue\":true,\"ranges\":[{\"row\":1,\"rowCount\":6,\"col\":4,\"colCount\":1}],\"value1\":\"66\",\"value2\":\"70\"}]}");//save to an excel fileworkbook.Save("conditionalformatsfromjson.xlsx");Refer to the following example code which uses IFormatConditions.ToJson method to export conditional formats to json string.C#//create a memory stream to store jsonMemoryStream outputStream = new MemoryStream();//create a new workbookvar workbook = new GrapeCity.Documents.Excel.Workbook();IWorksheet worksheet = workbook.Worksheets[0];object[,] data = new object[,]{ {"Name", "City", "Birthday", "Eye color", "Weight", "Height"}, {"Richard", "New York", new DateTime(1968, 6, 8), "Blue", 67, 165}, {"Nia", "New York", new DateTime(1972, 7, 3), "Brown", 62, 134}, {"Jared", "New York", new DateTime(1964, 3, 2), "Hazel", 72, 180}, {"Natalie", "Washington", new DateTime(1972, 8, 8), "Blue", 66, 163}, {"Damon", "Washington", new DateTime(1986, 2, 2), "Hazel", 76, 176}, {"Angela", "Washington", new DateTime(1993, 2, 15), "Brown", 68, 145}};worksheet.Range["A1:F7"].Value = data;//weight between 66 and 70, set its interior color to LightGreen.IFormatCondition condition = worksheet.Range["E2:E7"].FormatConditions.Add(FormatConditionType.CellValue, FormatConditionOperator.Between, 66, 70) as IFormatCondition;condition.Interior.Color = System.Drawing.Color.LightGreen;//icon set rule.IIconSetCondition condition2 = worksheet.Range["E2:E7"].FormatConditions.AddIconSetCondition();condition2.IconSet = workbook.IconSets[IconSetType.Icon3Symbols];condition2.IconCriteria[1].Operator = FormatConditionOperator.GreaterEqual;condition2.IconCriteria[1].Value = 30;condition2.IconCriteria[1].Type = ConditionValueTypes.Percent;condition2.IconCriteria[2].Operator = FormatConditionOperator.GreaterEqual;condition2.IconCriteria[2].Value = 70;condition2.IconCriteria[2].Type = ConditionValueTypes.Percent;//export conditional formats to jsonstring json = worksheet.Range["E2:E7"].FormatConditions.ToJson();StreamWriter writer = new StreamWriter(outputStream);writer.Write(json);writer.Flush();Refer to the following example code which uses ITop10.FromJson method to update top 10 conditional format from json string.C#//create a new workbookvar workbook = new GrapeCity.Documents.Excel.Workbook();IWorksheet worksheet = workbook.Worksheets[0];object[,] data = new object[,]{ {"Name", "City", "Birthday", "Eye color", "Weight", "Height"}, {"Richard", "New York", new DateTime(1968, 6, 8), "Blue", 67, 165}, {"Nia", "New York", new DateTime(1972, 7, 3), "Brown", 62, 134}, {"Jared", "New York", new DateTime(1964, 3, 2), "Hazel", 72, 180}, {"Natalie", "Washington", new DateTime(1972, 8, 8), "Blue", 66, 163}, {"Damon", "Washington", new DateTime(1986, 2, 2), "Hazel", 76, 176}, {"Angela", "Washington", new DateTime(1993, 2, 15), "Brown", 68, 145}};worksheet.Range["B:C"].ColumnWidthInPixel = 80;worksheet.Range["A1:F7"].Value = data; //update top 10 rule from jsonITop10 top10 = worksheet.Range["F2:F7"].FormatConditions.AddTop10();top10.FromJson("{\"ruleType\":5,\"style\":{\"backColor\":\"Accent 5\",\"hAlign\":3,\"vAlign\":0,\"locked\":true,\"textIndent\":null,\"cellButtons\":null},\"type\":0,\"rank\":\"3\",\"ranges\":[{\"row\":1,\"rowCount\":6,\"col\":5,\"colCount\":1}]}");//save to an excel fileworkbook.Save("top10fromjson.xlsx");Refer to the following example code which uses ITop10.ToJson method to export the top 10 conditional format to json string.C#//create a memory stream to store jsonMemoryStream outputStream = new MemoryStream();//create a new workbookvar workbook = new GrapeCity.Documents.Excel.Workbook();IWorksheet worksheet = workbook.Worksheets[0];object[,] data = new object[,]{ {"Name", "City", "Birthday", "Eye color", "Weight", "Height"}, {"Richard", "New York", new DateTime(1968, 6, 8), "Blue", 67, 165}, {"Nia", "New York", new DateTime(1972, 7, 3), "Brown", 62, 134}, {"Jared", "New York", new DateTime(1964, 3, 2), "Hazel", 72, 180}, {"Natalie", "Washington", new DateTime(1972, 8, 8), "Blue", 66, 163}, {"Damon", "Washington", new DateTime(1986, 2, 2), "Hazel", 76, 176}, {"Angela", "Washington", new DateTime(1993, 2, 15), "Brown", 68, 145}};worksheet.Range["A1:F7"].Value = data;ITop10 top10 = worksheet.Range["F2:F7"].FormatConditions.AddTop10();top10.Rank = 3;top10.NumberFormat = "0.00";top10.Interior.Color = System.Drawing.Color.FromArgb(91, 155, 213); //export top 10 rule to jsonstring json = top10.ToJson();StreamWriter writer = new StreamWriter(outputStream);writer.Write(json);writer.Flush();Please note:When IFormatConditions.FromJson is used, the format conditions in the range are cleared first and new format conditions are then applied from json string.When the FromJson method of IFormatCondition, ITop10, IAboveAverage, IUniqueValues, IColorScale, IDataBar and IIconSetCondition interface is used, the FormatConditionType in json must be the same type as the caller. Otherwise, an InvalidOperationException is thrown.GcExcel uses the caller's range to generate the new conditional formats and the range information in json is lost.Named StyleRefer to the following example code which uses IStyle.FromJson method to update an existing named style from json string.C#//create a new workbookvar workbook = new GrapeCity.Documents.Excel.Workbook();IWorksheet worksheet = workbook.Worksheets[0];// Create a temp stylevar style = workbook.Styles.Add("test");////update named styles from jsonstyle.FromJson("{\"backColor\":\"#4472c4\",\"foreColor\":\"#ffffff\",\"hAlign\":3,\"vAlign\":0,\"font\":\"italic 11pt Calibri\",\"borderLeft\":{\"color\":\"Accent 2\",\"style\":5},\"borderTop\":{\"color\":\"Accent 2\",\"style\":5},\"borderRight\":{\"color\":\"Accent 2\",\"style\":5},\"borderBottom\":{\"color\":\"Accent 2\",\"style\":5},\"locked\":true,\"textIndent\":null,\"cellButtons\":[]}");worksheet.Range["D4"].Value = "grapecity";worksheet.Range["D4"].Style = style;//save to an excel fileworkbook.Save("namedstylefromjson.xlsx");Refer to the following example code which uses IStyle.ToJson method to export the named style to json string.C#//create a memory stream to store jsonMemoryStream outputStream = new MemoryStream();//create a new workbookvar workbook = new GrapeCity.Documents.Excel.Workbook();// Create a temp stylevar style = workbook.Styles.Add("CustomStyle1");style.Interior.Color = System.Drawing.Color.FromArgb(68, 114, 196);style.Font.Color = System.Drawing.Color.White;style.Font.Italic =
true;style.Font.Size = 18;style.Borders.Color = System.Drawing.Color.DarkOrange;style.Borders.LineStyle = BorderLineStyle.Medium;//export style to jsonstring json = style.ToJson();StreamWriter writer = new StreamWriter(outputStream);writer.Write(json);writer.Flush();SparklineRefer to the following example code which uses ISparkline.FromJson method to update a sparkline from json string.C#//create a new workbookvar workbook = new GrapeCity.Documents.Excel.Workbook();IWorksheet worksheet = workbook.Worksheets[0];object[,] data = new object[,]{ {"Number", "Date", "Customer", "Description", "Trend", "0-30 Days", "30-60 Days", "60-90 Days", ">90 Days", "Amount"}, {"1001", new DateTime(2017, 5, 21), "Customer A", "Invoice 1001", null, 1200.15, 1916.18, 1105.23, 1806.53, null}, {"1002", new DateTime(2017, 3, 18), "Customer B", "Invoice 1002", null, 896.23, 1005.53, 1800.56, 1150.49, null}, {"1003", new DateTime(2017, 6, 15), "Customer C", "Invoice 1003", null, 827.63, 1009.23, 1869.23, 1002.56, null}};worksheet.Range["B2:K5"].Value = data;worksheet.Range["B:K"].ColumnWidth = 15;worksheet.Tables.Add(worksheet.Range["B2:K5"], true);worksheet.Tables[0].Columns[9].DataBodyRange.Formula = "=SUM(Table1[@[0-30 Days]:[>90 Days]])";worksheet.Range["F3:F5"].SparklineGroups.Add(SparkType.Line, "G3:J5"); //update sparkline from jsonworksheet.Range["F3"].SparklineGroups[0][0].FromJson("{\"row\":2,\"col\":5,\"orientation\":1,\"data\":{\"row\":2,\"col\":6,\"rowCount\":1,\"colCount\":5}}");//save to an excel fileworkbook.Save("sparklinefromjson.xlsx");Refer to the following example code which uses ISparkline.ToJson method to export a sparkline to json string.C#//create a memory stream to store jsonMemoryStream outputStream = new MemoryStream();//create a new workbookvar workbook = new GrapeCity.Documents.Excel.Workbook();object[,] data = new object[,]{ {"Number", "Date", "Customer", "Description", "Trend", "0-30 Days", "30-60 Days", "60-90 Days", ">90 Days", "Amount"}, {"1001", new DateTime(2017, 5, 21), "Customer A", "Invoice 1001", null, 1200.15, 1916.18, 1105.23, 1806.53, null}, {"1002", new DateTime(2017, 3, 18), "Customer B", "Invoice 1002", null, 896.23, 1005.53, 1800.56, 1150.49, null}, {"1003", new DateTime(2017, 6, 15), "Customer C", "Invoice 1003", null, 827.63, 1009.23, 1869.23, 1002.56, null}};IWorksheet worksheet = workbook.Worksheets[0];worksheet.Range["B2:K5"].Value = data;worksheet.Range["B:K"].ColumnWidth = 15;worksheet.Tables.Add(worksheet.Range["B2:K5"], true);worksheet.Tables[0].Columns[9].DataBodyRange.Formula = "=SUM(Table1[@[0-30 Days]:[>90 Days]])";worksheet.Range["F3:F5"].SparklineGroups.Add(SparkType.Line, "G3:J5");//export sparkline to jsonstring json = worksheet.Range["F3:F5"].SparklineGroups[0].ToJson();StreamWriter writer = new StreamWriter(outputStream);writer.Write(json);writer.Flush();Please note:SpreadJS has two kinds of sparkline, one is consistent with Excel, and the other is extended by SpreadJS. GcExcel supports the former's ToJson and FromJson. The latter can be set through formula.If you want to use ToJson and FromJson methods of sparklineGroup and sparkline, there must exist a sparklineGroup or sparkline in the current range, otherwise an out-of-bounds array exception is thrown.Location range information applies the same rules as data validation.Data range is updated by the data range from json string.GcExcel uses sparkline from json data as much as possible, but if the data size exceeds the size of selected range, it is discarded.TableRefer to the following example code which uses ITables.FromJson method to generate a table from json string.C#//create a new workbookvar workbook = new GrapeCity.Documents.Excel.Workbook();IWorksheet worksheet = workbook.Worksheets[0];object[,] data = new object[,]{ {"Name", "City", "Birthday", "Eye color", "Weight", "Height"}, {"Richard", "New York", new DateTime(1968, 6, 8), "Blue", 67, 165}, {"Nia", "New York", new DateTime(1972, 7, 3), "Brown", 62, 134}, {"Jared", "New York", new DateTime(1964, 3, 2), "Hazel", 72, 180}, {"Natalie", "Washington", new DateTime(1972, 8, 8), "Blue", 66, 163}, {"Damon", "Washington", new DateTime(1986, 2, 2), "Hazel", 76, 176}, {"Angela", "Washington", new DateTime(1993, 2, 15), "Brown", 68, 145}};worksheet.Range["A1:F7"].Value = data;worksheet.Range["B:C"].ColumnWidth = 10;worksheet.Range["D:D"].ColumnWidth = 11;//generate tables from jsonworksheet.Tables.FromJson("[{\"name\":\"Table1\",\"row\":0,\"col\":0,\"rowCount\":7,\"colCount\":6,\"style\":{\"buildInName\":\"Medium2\"},\"rowFilter\":{\"range\":{\"row\":1,\"rowCount\":6,\"col\":0,\"colCount\":6},\"typeName\":\"HideRowFilter\",\"dialogVisibleInfo\":{},\"filterButtonVisibleInfo\":{\"0\":true,\"1\":true,\"2\":true,\"3\":true,\"4\":true,\"5\":true},\"showFilterButton\":true},\"columns\":[{\"id\":1,\"name\":\"Name\"},{\"id\":2,\"name\":\"City\"},{\"id\":3,\"name\":\"Birthday\"},{\"id\":4,\"name\":\"Eye color\"},{\"id\":5,\"name\":\"Weight\"},{\"id\":6,\"name\":\"Height\"}]}]");//save to an excel fileworkbook.Save("tablefromjson.xlsx");Refer to the following example code which uses ITables.ToJson method to export a table to json string.C#//create a memory stream to store jsonMemoryStream outputStream = new MemoryStream();//create a new workbookvar workbook = new GrapeCity.Documents.Excel.Workbook();var worksheet = workbook.ActiveSheet;// Create tableworksheet.Tables.Add(worksheet.Range["A1:F7"], true);worksheet.Tables[0].Columns[0].Name = "Name";worksheet.Tables[0].Columns[1].Name = "City";worksheet.Tables[0].Columns[2].Name = "Birthday";worksheet.Tables[0].Columns[3].Name = "Eye color";worksheet.Tables[0].Columns[4].Name = "Weight";worksheet.Tables[0].Columns[5].Name = "Height";//export table to jsonstring json = worksheet.Tables.ToJson();StreamWriter writer = new StreamWriter(outputStream);writer.Write(json);writer.Flush();Please note:When ITables.FromJson and ITable.FromJson are used, the table(s) is cleared first to apply new table(s) from json string.When ITables.FromJson and ITable.FromJson are used, the value of cell is not cleared.

Import and Export SpreadJS Files
GcExcel .NET support the JSON I/O of SpreadJS files. You can also import an ssjson file created with SpreadJS Designer
and save it back after modifying it as per your preferences.

The below example code loads an ssjson file and then saves it to xlsx format.

C#

//Create a new workbook
Workbook workbook = new Workbook();

//Load SSJSON file
var stream = new System.IO.FileStream("Spread.ssjson", System.IO.FileMode.Open);
workbook.FromJson(stream);

//Save file
workbook.Save("workbook_ssjson.xlsx");

Note: Upon loading the SpreadJS JSON file, if users get the ColorIndex property of the IBorder interface in order to
set an index color, it will return a valid value only if the Color property of the IBorder interface is set to any rgb color;
else, it will return -2 as an invalid flag. Usually, an index color can be converted to rgb color but vice a versa is not
possible.

The below mentioned features are supported for JSON I/O by GcExcel. You can use FromJson and ToJson methods for
the same, as is also demonstrated in the sample code above.

Shapes

GcExcel .NET allows you to perform JSON I/O of SpreadJS files containing shapes. You can also download the JSON file
containing shape from here.

Documents for Excel, .NET Edition 456

Copyright © 2021 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/spreadjs/docs/v14/online/overview.html

Barcodes

GcExcel supports JSON I/O and PDF export of SpreadJS files containing barcodes. However while exporting to PDF, partial
SpreadJS barcode properties are supported. To know more about unsupported properties, refer Export Barcodes.

You can also download the JSON file containing barcodes from here.

Cell Buttons

SpreadJS files containing cell buttons are supported by GcExcel for JSON I/O, HTML, image and PDF exporting. You can
also download the JSON file containing cell buttons from here.

Cell Dropdowns

GcExcel supports JSON I/O of SpreadJS files containing cell dropdowns like calculator, color picker, time picker etc. You
can also download the JSON file containing cell dropdowns from here.

Validation Styles

Validation styles can be used to highlight invalid data in a worksheet. GcExcel supports JSON I/O, image and PDF
exporting of SpreadJS files containing validation styles. You can also download the JSON file containing validation style
from here.

Text Ellipsis

When text in a cell is longer than the column width, SpreadJS allows you to show ellipsis instead of overflowing text in the
other cell. The SpreadJS files containing text ellipsis are supported for JSON I/O and PDF exporting in GcExcel. You can
also download the JSON file containing text ellipsis from here.

Limitation

SpreadJS allows different types of text alignment composed with text ellipsis but GcExcel does not. Hence, text ellipsis is
only shown at the end of text in exported PDF.

Range Template

In SpreadJS, you can create a range cell type which can be used to specify a cell range in the worksheet as a template. You
can modify the display mode and appearance of the resultant data just by changing the template. GcExcel supports JSON
I/O and PDF exporting of SpreadJS files containing Range templates.

You can also download the JSON file containing range template from here.

Format String

SpreadJS supports Format string feature which allows cells to have both formulas and text as a part of text value
templates. GcExcel supports JSON I/O of SpreadJS files containing format strings.

You can also download the JSON file containing format string from here.

JSON Options

In SpreadJS, while importing or exporting custom data from/to a JSON object, you can set several serialization or

Documents for Excel, .NET Edition 457

Copyright © 2021 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/spreadjs/docs/v14/online/range-template-cell.html
https://www.grapecity.com/spreadjs/docs/v14/online/format_string.html

deserialization options. GcExcel also supports some of these options for workbook and worksheet JSON I/O and in
GcExcel API. The below table explains the supported options in SpreadJS and GcExcel.

SpreadJS (toJSON and fromJSON) GcExcel (ToJSON and FromJSON)

Serialization ignoreStyle

ignoreFormula

rowHeadersAsFrozenColumns

columnHeadersAsFrozenRows

ignoreStyle

ignoreFormula

Deserialization ignoreStyle

ignoreFormula

frozenColumnsAsRowHeaders

frozenRowsAsColumnHeaders

doNotRecalculateAfterLoad

ignoreStyle

ignoreFormula

doNotRecalculateAfterLoad

GcExcel provides SerializationOptions and DeserializationOptions classes in API with above-mentioned supported
properties.

The following example code serializes a workbook to JSON with options in GcExcel.

C#

 //create a new workbook
 var workbook = new GrapeCity.Documents.Excel.Workbook();

 var worksheet = workbook.Worksheets[0];

 worksheet.Range["B3:C16"].Value = new object[,]
 {
{ "ITEM", "AMOUNT" },
{ "Rent/mortgage", 800 },
{ "Electric", 120 },
{ "Gas", 50 },
{ "Cell phone", 45 },
{ "Groceries", 500 },
{ "Car payment", 273 },
{ "Auto expenses", 120 },
{ "Student loans", 50 },
{ "Credit cards", 100 },
{ "Auto Insurance", 78 },
{ "Personal care", 50 },
{ "Entertainment", 100 },
{ "Miscellaneous", 50 },
 };

Documents for Excel, .NET Edition 458

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 // Create a table
 ITable expensesTable = worksheet.Tables.Add(worksheet.Range["B3:C16"], true);
 expensesTable.Name = "tblExpenses";
 worksheet.Range["C3:C16"].NumberFormat = "$#,##0_);($#,##0)";

 worksheet.Range["B2:C2"].Merge();
 worksheet.Range["B2"].Value = "MONTHLY EXPENSES";
 worksheet.Range["B2"].Interior.Color = System.Drawing.Color.FromArgb(219, 219, 219);
 worksheet.Range["E2"].Value = "Total Monthly Expenses";
 worksheet.Range["E3"].Formula = "SUM(tblExpenses[AMOUNT])";
 worksheet.Range["E3"].NumberFormat = "$#,##0_);($#,##0)";

 worksheet.Range["B:B"].ColumnWidth = 15;
 worksheet.Range["C:C"].ColumnWidth = 15;
 worksheet.Range["E:F"].ColumnWidth = 15;

 string json = workbook.ToJson();

 // ignore style and formula when deserialize workbook from json.
 workbook.FromJson(json, new DeserializationOptions() { IgnoreFormula = true,
IgnoreStyle = true });

 //save to an excel file
 workbook.Save("fromjsonwithoptions.xlsx");

The following example code deserializes a workbook from JSON with options in GcExcel.

C#

 //create a new workbook
 var workbook = new GrapeCity.Documents.Excel.Workbook();

 var worksheet = workbook.Worksheets[0];

 worksheet.Range["B3:C16"].Value = new object[,]
 {
{ "ITEM", "AMOUNT" },
{ "Rent/mortgage", 800 },
{ "Electric", 120 },
{ "Gas", 50 },
{ "Cell phone", 45 },
{ "Groceries", 500 },
{ "Car payment", 273 },
{ "Auto expenses", 120 },
{ "Student loans", 50 },
{ "Credit cards", 100 },
{ "Auto Insurance", 78 },
{ "Personal care", 50 },

Documents for Excel, .NET Edition 459

Copyright © 2021 GrapeCity, Inc. All rights reserved.

{ "Entertainment", 100 },
{ "Miscellaneous", 50 },
 };

 // Create a table
 ITable expensesTable = worksheet.Tables.Add(worksheet.Range["B3:C16"], true);
 expensesTable.Name = "tblExpenses";
 worksheet.Range["C3:C16"].NumberFormat = "$#,##0_);($#,##0)";

 worksheet.Range["B2:C2"].Merge();
 worksheet.Range["B2"].Value = "MONTHLY EXPENSES";
 worksheet.Range["B2"].Interior.Color = System.Drawing.Color.FromArgb(219, 219, 219);
 worksheet.Range["E2"].Value = "Total Monthly Expenses";
 worksheet.Range["E3"].Formula = "SUM(tblExpenses[AMOUNT])";
 worksheet.Range["E3"].NumberFormat = "$#,##0_);($#,##0)";

 worksheet.Range["B:B"].ColumnWidth = 15;
 worksheet.Range["C:C"].ColumnWidth = 15;
 worksheet.Range["E:F"].ColumnWidth = 15;

 // ignore style and formula when serialize workbook to json
 string jsonWithOption = workbook.ToJson(new SerializationOptions() { IgnoreFormula =
true, IgnoreStyle = true });

 workbook.FromJson(jsonWithOption);

 //save to an excel file
 workbook.Save("tojsonwithoptions.xlsx");

Note: SpreadJS supports multi-level row or column headers but GcExcel does not. However, you can still retain the
header information in GcExcel by following the below steps:

1. Use SpreadJS to export JSON with 'rowHeadersAsFrozenColumns or columnHeadersAsFrozenRows' option as
true to convert multi-header to frozen area, and use GcExcel to load the JSON file.

2. Manipulate the frozen area in GcExcel.
3. Use GcExcel to export JSON file, and use SpreadJS to load JSON file with 'frozenColumnsAsRowHeaders or

frozenRowsAsColumnHeaders ' option as true to convert frozen area to header.

Checkbox or Radiobutton List Cell Type

GcExcel supports JSON I/O and PDF exporting of SpreadJS files containing checkbox list and radiobutton list cell
types. You can also download the JSON file containing radiobutton list and checkbox list cell type from here.

GcExcel also provides RadioButtonListCellType and CheckBoxListCellType classes in its API to add these cell types.

The following example code creates a checkbox list cell type for a cell in GcExcel.

C#

//create a new workbook

Documents for Excel, .NET Edition 460

Copyright © 2021 GrapeCity, Inc. All rights reserved.

var workbook = new GrapeCity.Documents.Excel.Workbook();
IWorksheet worksheet = workbook.Worksheets[0];

CheckBoxListCellType cellType = new CheckBoxListCellType
{
 Direction = CellTypeDirection.Horizontal,
 TextAlign = CellTypeTextAlign.Right,
 IsFlowLayout = false,
 MaxColumnCount = 2,
 MaxRowCount = 1,
 HorizontalSpacing = 20,
 VerticalSpacing = 5,
};
cellType.Items.Add(new SelectFieldItem("sample1", "1"));
cellType.Items.Add(new SelectFieldItem("sample2", "2"));
cellType.Items.Add(new SelectFieldItem("sample3", "3"));
cellType.Items.Add(new SelectFieldItem("sample4", "4"));
cellType.Items.Add(new SelectFieldItem("sample5", "5"));
worksheet.Range["A1"].RowHeight = 60;
worksheet.Range["A1"].ColumnWidth = 25;
worksheet.Range["A1"].CellType = cellType;

//check multiple options in the check box list
 worksheet.Range["A1"].Value = new object[,]
{
 {new object[]{"1", "3", "5" } }
};

//save to a pdf file
workbook.Save("addcheckboxlistcelltype.pdf");

The following example code creates checkbox list cell type and sets the value of the option as a custom object.

C#

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

GrapeCity.Documents.Excel.Workbook.ValueJsonSerializer = new
CustomObjectJsonSerializer();
IWorksheet worksheet = workbook.Worksheets[0];

CheckBoxListCellType cellType = new CheckBoxListCellType
{
 Direction = CellTypeDirection.Horizontal,
 TextAlign = CellTypeTextAlign.Right,
 IsFlowLayout = false,
 MaxColumnCount = 2,

Documents for Excel, .NET Edition 461

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 MaxRowCount = 1,
 HorizontalSpacing = 20,
 VerticalSpacing = 5,
};
cellType.Items.Add(new SelectFieldItem("player1", new People { Name = "Tom", Age = 5
}));
cellType.Items.Add(new SelectFieldItem("player2", new People { Name = "Jerry", Age = 3
}));
cellType.Items.Add(new SelectFieldItem("player3", new People { Name = "Mario", Age = 6
}));
cellType.Items.Add(new SelectFieldItem("player4", new People { Name = "Luigi", Age = 4
}));
worksheet.Range["A1"].RowHeight = 60;
worksheet.Range["A1"].ColumnWidth = 25;
worksheet.Range["A1"].CellType = cellType;

worksheet.Range["A1"].Value = new object[,]
{
{new object[]{ new People { Name = "Tom", Age = 5 }, new People { Name = "Mario", Age =
6 }} }
};

//save to a pdf file
workbook.Save("addcheckboxlistcelltypecustomobject.pdf");
}
class CustomObjectJsonSerializer : IJsonSerializer
{
 public object Deserialize(string json)
 {
 return Newtonsoft.Json.JsonConvert.DeserializeObject<People>(json);
 }

 public string Serialize(object value)
 {
 if (value is People)
 {
 return Newtonsoft.Json.JsonConvert.SerializeObject(value);
 }
 return null;
 }
}
class People
{
 private int age;
 private string name;

 public int Age { get => age; set => age = value; }
 public string Name { get => name; set => name = value; }

Documents for Excel, .NET Edition 462

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 public override bool Equals(object obj)
 {
 return obj is People people &&
 age == people.age &&
 name == people.name;
 }

 public override int GetHashCode()
 {
 return age.GetHashCode() ^ name.GetHashCode();
 }
}

 The following example code creates a radio list cell type for a cell in GcExcel.

C#

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();
IWorksheet worksheet = workbook.Worksheets[0];

RadioButtonListCellType cellType = new RadioButtonListCellType
{
 Direction = CellTypeDirection.Horizontal,
 TextAlign = CellTypeTextAlign.Right,
 IsFlowLayout = false,
 MaxColumnCount = 2,
 MaxRowCount = 1,
 HorizontalSpacing = 20,
 VerticalSpacing = 5,
};
cellType.Items.Add(new SelectFieldItem("sample1", "1"));
cellType.Items.Add(new SelectFieldItem("sample2", "2"));
cellType.Items.Add(new SelectFieldItem("sample3", "3"));
cellType.Items.Add(new SelectFieldItem("sample4", "4"));
cellType.Items.Add(new SelectFieldItem("sample5", "5"));
worksheet.Range["A1"].RowHeight = 60;
worksheet.Range["A1"].ColumnWidth = 25;
worksheet.Range["A1"].CellType = cellType;
worksheet.Range["A1"].Value = 1;

//check multiple options in the radio button list
 worksheet.Range["A1"].Value = new object[,]
{
 {new object[]{"1", "3", "5" } }
};

Documents for Excel, .NET Edition 463

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//save to a pdf file
workbook.Save("addradiobuttonlistcelltype.pdf");

 The following example code creates radiobutton cell type and sets the value of the option as a custom object.

C#

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

GrapeCity.Documents.Excel.Workbook.ValueJsonSerializer = new
CustomObjectJsonSerializer();
IWorksheet worksheet = workbook.Worksheets[0];

RadioButtonListCellType cellType = new RadioButtonListCellType
{
 Direction = CellTypeDirection.Horizontal,
 TextAlign = CellTypeTextAlign.Right,
 IsFlowLayout = false,
 MaxColumnCount = 2,
 MaxRowCount = 1,
 HorizontalSpacing = 20,
 VerticalSpacing = 5,
};
cellType.Items.Add(new SelectFieldItem("player1", new People { Name = "Tom", Age = 5
}));
cellType.Items.Add(new SelectFieldItem("player2", new People { Name = "Jerry", Age = 3
}));
cellType.Items.Add(new SelectFieldItem("player3", new People { Name = "Mario", Age = 6
}));
cellType.Items.Add(new SelectFieldItem("player4", new People { Name = "Luigi", Age = 4
}));
worksheet.Range["A1"].RowHeight = 60;
worksheet.Range["A1"].ColumnWidth = 25;
worksheet.Range["A1"].CellType = cellType;

worksheet.Range["A1"].Value = new object[,]
{
{new People { Name = "Tom", Age = 5 } }
};

//save to a pdf file
workbook.Save("addradiobuttoncelltypecustomobject.pdf");
}

class CustomObjectJsonSerializer : IJsonSerializer
{

Documents for Excel, .NET Edition 464

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 public object Deserialize(string json)
 {
 return Newtonsoft.Json.JsonConvert.DeserializeObject<People>(json);
 }

 public string Serialize(object value)
 {
 if (value is People)
 {
 return Newtonsoft.Json.JsonConvert.SerializeObject(value);
 }
 return null;
 }
}
class People
{
 private int age;
 private string name;

 public int Age { get => age; set => age = value; }
 public string Name { get => name; set => name = value; }

 public override bool Equals(object obj)
 {
 return obj is People people &&
 age == people.age &&
 name == people.name;
 }

 public override int GetHashCode()
 {
 return age.GetHashCode() ^ name.GetHashCode();
 }
}

Cell Padding and Labels

GcExcel allows you to perform JSON I/O and PDF exporting for SpreadJS files containing cell padding and labels. You can
also download the JSON file containing cell padding and labels from here.

In addition to this, GcExcel also provides CellPadding and Margin class, ILabelOptions interface, LabelAlignment and
LabelVisibility enumerations to support cell padding and labels in GcExcel.

The following example code adds cell padding and labels in a GcExcel worksheet.

C#

// create a new workbook
Workbook workbook = new Workbook();
// get the sheet

Documents for Excel, .NET Edition 465

Copyright © 2021 GrapeCity, Inc. All rights reserved.

IWorksheet worksheet = workbook.Worksheets[0];
// set row height
worksheet.Range["A:A"].RowHeight=40;
// set column width
worksheet.Range["A:A"].ColumnWidth=25;
// set watermark
worksheet.Range["A1"].Watermark="GcExcel JAVA";
// set cell padding
worksheet.Range["A1"].CellPadding=new CellPadding(50, 0, 0, 0);
// set label options
worksheet.Range["A1"].LabelOptions.Visibility = LabelVisibility.visible;
worksheet.Range["A1"].LabelOptions.ForeColor = Color.Green;
worksheet.Range["A1"].LabelOptions.Margin=new Margin(15, 0, 0, 0);
worksheet.Range["A1"].LabelOptions.Font.Size=14;
worksheet.Range["A1"].LabelOptions.Font.Name="Calibri";
worksheet.Range["A1"].Borders.LineStyle=BorderLineStyle.Thin;

// save to a pdf file
workbook.Save("CellPaddingAndLabels.pdf");

Background Image

GcExcel supports JSON I/O and PDF exporting of SpreadJS files containing background images. You can also download
the JSON file containing background image from here.

GcExcel also provides BackgroundPictures property in IWorksheet interface to add background pictures in GcExcel. For
more information, refer Support Sheet Background Image.

The following example code sets background image in GcExcel worksheet.

C#

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

IWorksheet worksheet = workbook.Worksheets[0];

FileStream stream = File.Open(@"Logo.png", FileMode.Open, FileAccess.Read);

//Add background picture
IBackgroundPicture picture = worksheet.BackgroundPictures.AddPictureInPixel(stream,
ImageType.PNG, 10, 10, 500, 370);
//Set image layout
picture.BackgroundImageLayout = ImageLayout.Zoom;

//Set options
workbook.ActiveSheet.PageSetup.PrintGridlines = true;

//save to a pdf file
workbook.Save("backgroundimage.pdf");

Documents for Excel, .NET Edition 466

Copyright © 2021 GrapeCity, Inc. All rights reserved.

 The following example code imports background image from JSON and exports to PDF document.

C#

Workbook workbook = new Workbook();

string ssjson = string.Empty;
try
{
 var jsonFile = @"D:\bgimage.ssjson";

 using (StreamReader sr = System.IO.File.OpenText(jsonFile))
 {
 ssjson = sr.ReadToEnd();
 }
}
catch (Exception e)
{
 Console.WriteLine(e);
}

//Importing from ssjson
workbook.FromJson(ssjson);

//Set options
workbook.ActiveSheet.PageSetup.PrintGridlines = true;

//Exporting to PDF
workbook.Save("bgimage.pdf");

Limitations

While importing from JSON, the background image is placed at the (left : 0, top: 0) location of each worksheet.
After exporting to PDF, all pages of PDF document will have the same background image as was imported from
ssjson

Background Color

GcExcel supports JSON I/O and PDF exporting of SpreadJS files containing background color. You can also download
the JSON file containing background color from here.

GcExcel also provides BackColor and GrayAreaBackColor properties in IWorkbookView interface to set background color
in GcExcel.

The following code example sets background color for all the worksheets in GcExcel.

C#

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

Documents for Excel, .NET Edition 467

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//Set background color
workbook.BookView.BackColor = Color.LightSkyBlue;
workbook.BookView.GrayAreaBackColor = Color.Gray;

//Set value to a cell
IWorksheet worksheet = workbook.ActiveSheet;
worksheet.Range["H20"].Value = "The text";

//Set page options
worksheet.PageSetup.PrintGridlines = true;
worksheet.PageSetup.PrintHeadings = true;

//save to a pdf file
workbook.Save("backgroundcolor.pdf");

Limitation

In SpreadJS, background image always overrides the background color. Thus, the background image needs to be removed
for the background color to take effect while exporting to PDF documents.

Support for SpreadJS Features
The following table describes the SpreadJS features supported by GcExcel either in its API or for JSON I/O or PDF export.

Scope SpreadJS Features JSON I/O GcExcel API PDF Export

Workbook numbersFitMode Yes No No

tabNavigationVisible Yes No No

backColor Yes Yes Yes

backgroundImage Yes Yes Yes

backgroundImageLayout Yes Yes Yes

highlightInvalidData Yes No Yes

grayAreaBackColor Yes Yes Yes

scrollbarAppearance Yes No No

Scope SpreadJS Features JSON I/O GcExcel API PDF Export

Worksheet frozenTrailingRowCount Yes Yes No

frozenTrailingColCount Yes Yes No

rowCount Yes No No

columnCount Yes No No

rowHeaderColCount Yes No No

Documents for Excel, .NET Edition 468

Copyright © 2021 GrapeCity, Inc. All rights reserved.

colHeaderRowCount Yes No No

tag Yes Yes No

rowHeaderData Yes No No

colHeaderData Yes No No

autoGenerateColumns Yes Yes No

showRowOutline Yes Yes Yes

showColumnOutline Yes Yes Yes

frozenlineColor Yes Yes No

rowHeaderAutoText Yes No No

colHeaderAutoText Yes No No

outlineColumnOptions Yes Yes Yes

autoMergeRangeInfos Yes No No

Scope SpreadJS Features JSON I/O GcExcel API PDF Export

Cell tag Yes Yes No

bindingPath Yes Yes No

Style ShowEllipsis Yes No Yes

cellTypes:

RangeTemplateCellType
CheckBoxListCellType
RadioButtonListCellType
ButtonCellType
CheckBoxCellType
ComboBoxCellType
HyperLinkCellType
BaseCellType

Yes Yes Yes

watermark Yes Yes Yes

cellPadding Yes Yes Yes

labelOptions Yes Yes Yes

cellButton Yes No Yes

dropdownlist Yes No Yes

Scope SpreadJS Features JSON I/O GcExcel API PDF Export

Import and Export Macros

Documents for Excel, .NET Edition 469

Copyright © 2021 GrapeCity, Inc. All rights reserved.

This section summarizes how GcExcel.NET handles the import and export of Excel files containing macros. Using
GcExcel.NET, users can load and save Excel files containing macros (.xlsm files) without any hassles. Please note that
GcExcel will not execute these macros.

Typically, this feature has been introduced in order to allow users to load and save macro-enabled spreadsheets. Macros
help automate repetitive tasks and hence, reduce significant amount of time while working with spreadsheets. Now, users
can load such spreadsheets in GcExcel directly as Xlsm files, modify them easily and quickly and then save them back.

During the execution of import and export operations on the Excel files, all the macros will also be preserved concurrently
along with the data. While opening and saving the Excel workbooks or Excel macro-enabled workbooks, macros will
always be imported and exported respectively. The form controls and ActiveX controls are also supported during the
import and export operations.

When the OpenFileFormat is Xlsm, macros will be imported. When the SaveFileFormat is Xlsm, macros will be exported.

Note: While preserving the macros on import or export of Excel files, GcExcel will not execute these macros.

Refer to the following example code in order to import and export macros in spreadsheet documents.

C#

// Open a .xlsm file with file name
var workbook = new Workbook();
workbook.Open("testfile.xlsm");

// Save workbook as Excel macro-enabled workbook file
var workbook = new Workbook();
workbook.Save("file.xlsm");

// Save workbook as Excel macro enabled workbook into stream
var workbook = new Workbook();
var request = WebRequest.CreateHttp("https://path/to/excel/file/upload");
request.Method = "POST";
request.ContentType = "application/x-www-form-urlencoded";
var workbookContent = new MemoryStream();
workbook.Save(workbookContent, SaveFileFormat.Xlsm);
workbookContent.Seek(0, SeekOrigin.Begin);
request.ContentLength = workbookContent.Length;
using (var reqStream = request.GetRequestStream())
{
 workbookContent.CopyTo(reqStream);
}

Import and Export OLE Objects
GcExcel .NET allows users to preserve OLE objects while opening and saving an Excel file. This feature is extremely useful
when users need to deal with import and export of linked objects and embedded objects while working with
spreadsheets.

With extensive support for importing and exporting OLE Objects, users can insert linked and embedded objects in their

Documents for Excel, .NET Edition 470

Copyright © 2021 GrapeCity, Inc. All rights reserved.

spreadsheets and then preserve these objects while saving the files with .xlsx or .xlsm extension. This feature also
facilitates users to use the object linking and embedding (OLE) in order to load and save data from other programs, such
as MS Word or MS Excel.

Example

For instance, let's say you work as a business analyst who wants to visualize information using charts.

You have a source file containing some data. But, you want the chart to be displayed in another file (called a destination
file) that picks up data from the source file in order to create charts in the destination file. Now, whenever any changes are
done in the data in the source file, obviously you would also want the chart to be updated (or in other words, the
destination file to be updated).

That's where the role of supporting the import and export of OLE objects comes into picture. In such a scenario, GcExcel
will ensure that the original data remains intact in the source file and the destination file represents the updated linked
information (updated charts in this example) without impacting the storage of the original data.

Refer to the following example code in order to import and export spreadsheets containing OLE objects.

C#

// Initialize workbook
Workbook workbook = new Workbook();

// Opening workbook with OLE object
workbook.Open("OleObjectExcelFile.xlsx");

// Saving workbook with OLE object
workbook.Save("OleOutExcel.xlsx");

Convert to Image
GcExcel allows you to convert a worksheet, any specified range and various shape types to images. Hence, making it
convenient to use the converted images directly in other documents, like Word, PDF or a PPT document. The supported
image formats for conversion are PNG, JPG/JPEG and GIF.

Note: To convert images with transparency, PNG like image format should be used as GIF format doesn't support
image transparency.

Convert Worksheet to Image

A worksheet can be converted to image using the ToImage method of IWorksheet interface. The converted image
displays the rectangular area of the worksheet enclosed under cell A1 and the last cell where any data or shape is present.
For eg, if a worksheet contains a shape or data in the range D5:F9, the converted image will display the area under the
range A1:F9.

A blank worksheet cannot be converted to image.

Refer to the following example code to convert a worksheet to image.

C#

Documents for Excel, .NET Edition 471

Copyright © 2021 GrapeCity, Inc. All rights reserved.

//create a new workbook
Workbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];

//Add data
worksheet.Range["S50"].Value = 10;

//Save worksheet to image
worksheet.ToImage("ConvertWorksheetToImage.png");

Refer to the following example code to convert a worksheet to image from existing file.

C#

//Create a png file stream
FileStream outputStream = new FileStream("ConvertWorksheetToImage.png",
FileMode.Create);

//Create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

FileStream fileStream = new FileStream("Workbook.xlsx", FileMode.Open);

//Open a xlsx file
workbook.Open(fileStream);
IWorksheet worksheet = workbook.Worksheets[0];

//Export the worksheet to image
worksheet.ToImage(outputStream, ImageType.PNG);

//Close the image stream
outputStream.Close();

Convert Range to Image

A specific range in a worksheet can be converted to image using the ToImage method of the IRange interface. The
resulting image displays the rectangular area of the worksheet enclosed under the specified range.

Refer to the following example code to convert a specified range to image.

C#

//create a new workbook
Workbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];

//Add data
worksheet.Range["D10:F10"].Value = new string[] { "Device", "Quantity", "Unit Price" };
worksheet.Range["D11:F14"].Value = new object[,]
{ { "T540p", 12, 9850 },

Documents for Excel, .NET Edition 472

Copyright © 2021 GrapeCity, Inc. All rights reserved.

{ "T570", 5, 7460 },
{ "Y460", 6, 5400 },
{ "Y460F", 8, 6240 } };

IRange range = worksheet.Range["D10:F14"];

//Save range to image
range.ToImage("ConvertRangeToImage.png");

Refer to the following example code to convert a specified range to image from an existing file.

C#

//Create a png file stream
FileStream outputStream = new FileStream("ConvertRangeToImage.png", FileMode.Create);

//Create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

FileStream fileStream = new FileStream("RangeWorkbook.xlsx", FileMode.Open);

//Open a xlsx file contains data in a range
workbook.Open(fileStream);
IWorksheet worksheet = workbook.Worksheets[0];

//Export the range to image
worksheet.Range["A1:C5"].ToImage(outputStream, ImageType.PNG);

//Close the image stream
outputStream.Close();

Convert Shape to Image

GcExcel allows you to convert various shape types to image using the ToImage method of the IShape interface. The
shape types include shapes like chart, picture, slicer and autoshape. The resulting image displays the rectangular area of
the worksheet enclosed under the shape.

Refer to the following example code to convert an autoshape to image.

C#

//create a new workbook
Workbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];

//Add an oval
IShape shape = worksheet.Shapes.AddShape(AutoShapeType.Oval, 20, 20, 200, 100);

//Save oval to image
shape.ToImage("ConvertShapeToImage.png");

Documents for Excel, .NET Edition 473

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Refer to the following example code to convert an autoshape to image from existing file.

C#

//create a png file stream
FileStream outputStream = new FileStream("ConvertShapeToImage.png", FileMode.Create);

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

FileStream fileStream = new FileStream("ShapeWorkbook.xlsx", FileMode.Open);

//Open a xlsx file contains a group shape
workbook.Open(fileStream);
IWorksheet worksheet = workbook.Worksheets[0];

//Export the shape to image
worksheet.Shapes[0].ToImage(outputStream, ImageType.PNG);

//close the image stream
outputStream.Close();

Refer to the following example code to convert a chart to image.

C#

//create a new workbook
Workbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];

// Prepare data for chart
worksheet.Range["A1:D4"].Value = new object[,]
{
 {null, "Q1", "Q2", "Q3"},
 {"Mobile Phones", 1330, 2345, 3493},
 {"Laptops", 2032, 3632, 2197},
 {"Tablets", 6233, 3270, 2030}
};

worksheet.Range["A:D"].Columns.AutoFit();

// Add Area Chart
IShape shape = worksheet.Shapes.AddChart(ChartType.Area, 250, 20, 360, 230);

// Add series to SeriesCollection
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D4"], RowCol.Columns, true, true);

// Configure Chart Title

Documents for Excel, .NET Edition 474

Copyright © 2021 GrapeCity, Inc. All rights reserved.

shape.Chart.ChartTitle.TextFrame.TextRange.Paragraphs.Add("Annual Sales Record");

//Save chart to image
shape.ToImage("ConvertChartToImage.png");

Refer to the following example code to convert a chart to image from existing file.

C#

//create a png file stream
FileStream outputStream = new FileStream("ConvertChartToImage.png", FileMode.Create);

//create a new workbook
var workbook = new GrapeCity.Documents.Excel.Workbook();

FileStream fileStream = new FileStream("ScatterChart.xlsx", FileMode.Open);

//Open a xlsx file contains a chart
workbook.Open(fileStream);
IWorksheet worksheet = workbook.Worksheets[0];

//Export the chart to image
worksheet.Shapes[0].ToImage(outputStream, ImageType.PNG);

//close the image stream
outputStream.Close();

Documents for Excel, .NET Edition 475

Copyright © 2021 GrapeCity, Inc. All rights reserved.

API Reference
The complete GcExcel .NET component includes the assembly listed in the table shared below. For more details, you can
click on the name of the assembly to know about the namespaces defined in it.

Assembly Description

Grapecity.Documents.Excel Provides the namespaces for the GcExcel .NET component functionality for .Net Core.

For help with using the product, refer to the Key Features.

Documents for Excel, .NET Edition 476

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Release Notes
Current Release Notes
Refer to the release notes for the major releases of the product.

Release Notes for Version 4.1.0
Release Notes for Version 4.0.0
Release Notes for Version 3.2.0
Release Notes for Version 3.1.0
Release Notes for Version 3.0.0
Release Notes for Version 2.2.0
Release Notes for Version 2.1.0
Release Notes for Version 2.0.0
Release Notes for Version 1.5.0.4
Release Notes for Version 1.5.0.3
Release Notes for Version 1.5.0.1
Release Notes for Version 1.4.0

For details about latest hotfixes, see the nuget page.

Note : GcExcel .NET currently does not provide support for Smart Art Graphics, exporting Excel files to XPS and SVG
files, importing XLS files and the Form Controls.

Release Notes for Version 4.1.0
Enhancements from the Previous Release
The following features have been added with this version of the product:

Parse formula string into a syntax tree.
Ignore Formulas when saving Excel files.
Support open action script on PdfSaveOptions.
New overload method to load JSON.
More Features for SpreadJS Integration: RangeTemplate cell type, get/set custom object as cell value.
New ToJson and FromJSON methods to Workbook elements.

Performance Enhancements
The following performance enhancements have been done in this version of the product:

Excel Template processing performance has been improved.
Calculation Engine's performance has been improved while setting values.

Resolved Issues
The following issues have been resolved since the last release.

Documents for Excel, .NET Edition 477

Copyright © 2021 GrapeCity, Inc. All rights reserved.

https://www.nuget.org/packages/GrapeCity.Documents.Excel/

Performance issue when updating data in Excel using GcExcel API.
When the worksheet contains a shape, the row height cannot be changed.
The formula =TEXT("12345","[dbnum2]") does not work.
The font is bold after exporting to PDF.
ROUNDUP result is different with Excel.
GcExcel formula result is different with Excel.
COUNTIF result is different with Excel.
After saving to Excel, the hidden rows are displayed.
Conditional Format is not exported in PDF/HTML.
The position of radio button list is wrong in the exported PDF.
After setting the cell style in two ways, the results are different.
Using IRange.HasFormula and IRange.Value together, degrades performance.
Mixed order of Set and Get cell values degrades performance.

Release Notes for Version 4.0.0
Enhancements from the Previous Release
The following features have been added with this version of the product:

Support for new PDF Form custom input types in Excel Templates with advanced input and validation settings.
Support for adding, modifying and deleting Pivot Charts in Excel documents.
Support for iterative calculations in Excel documents.
Support for adding Barcodes while exporting to PDF, HTML or Image file formats.
Support for cross-workbook formulas.
Support setting default value for template cell.
Support for getting range address to get cell's address.
Add page printing events to track progress of Excel to PDF conversion.
Support for selecting multiple worksheets.
Support for getting special cells in a range.
Disable auto grouping for date/times in PivotTable.
Add more features for GrapeCity SpreadJS integration: cell buttons, radio and checkbox list cell type, etc.

Resolved Issues
The following issues have been resolved since the last release.

PivotTable MergeLabel's merged area is incorrect.
PivotTable.DataBodyRange throws exception.
Cannot open xlsx when the pivot source contains null values.
Failed to export an Excel with pivot table.
Program does not end and CPU utilisation is 100% while exporting to PDF.
Broken Excel file is generated when copying a sheet.
ArrayIndexOutOfBoundsException when generating JSON.
When margins are set to the same value, the rendering position is not the same in PDF.
Labels does not merge in exported xlsx file.
SUM is calculated incorrectly when using GcExcel template functionality.

Documents for Excel, .NET Edition 478

Copyright © 2021 GrapeCity, Inc. All rights reserved.

PDF form is not displayed when 'printed' and 'hidden' settings are false in form field.
Rows do not repeat while using GcExcel Template.
Null exception is thrown during loading ssjson.
Null exception is thrown when calling Workbook.Calculate.
The text in exported image is wrong.
The pivot table label does not merge in exported xlsx file.

Release Notes for Version 3.2.0
Enhancements from the Previous Release
The following features has been added with this version of the product:

Support for generating PDF Form from Excel Templates.
Support using sparklines and tables in Excel Templates.
Support defining Fixed layout for Excel report and fill data in specific range.
Support exporting workbook/worksheet/range to HTML.
Support Digital Signatures API: add and sign signature lines, add and sign non-visible signatures, verify signatures,
etc.
Pivot Table enhancements: create multiple files from one Pivot Field, Defer updating, Sorting, Field layout settings,
etc.
Support adjustment of shape z-order.
Support image quality when exporting to PDF.
Support Picture Transparency when adding Images to Excel.
Support more SpreadJS features: show or hide horizontal and vertical grid lines, freeze trailing rows/columns, etc.

Resolved Issues
The following issues have been resolved since the last release.

Object reference error on converting the Workbook to JSON with DataValidation definitions.
ToJSON method throws error when cell has formatter on Linux.
FromJSON method takes long time to import ssjson file using GcExcel.
Some content displays incompletely in exported PDF.

Release Notes for Version 3.1.0
Enhancements from the Previous Release
The following features has been added with this version of the product:

Support for charts, images and conditional formatting in Templates.
Support exporting formulas in Templates
Support global settings in Templates.
Support converting Excel objects(chart or shape) to image formats.
Support password protected workbook and worksheet.
Support adding Error Bars in Chart.
Support text angle of chart title, axis tick label and data label.

Documents for Excel, .NET Edition 479

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Support alignment of Shape's TextFrame.
Add image to specific range.
Support Gradient Fill Type enum in Shapes.
Support creating chart/shape/pictures with a custom name.
Enhanced Background image support for printing to PDF.
Get pagination info for printing to PDF.
Support Transparent Cell Background color in PDF.
Support worksheet JSON I/O.
Support Outline column to display hierarchical data in saved PDF.
Support data binding of Range, Table and Worksheet.
Return errors from JSON Import in GcExcel.

Resolved Issues
The following issues have been resolved since the last release.

Filtered data cannot be re-displayed after JSON(made by SJS) I/O in GcExcel.
Exception occurs on loading specific ssjson.
Exception may occur on exporting certain Excel sheets with charts to PDF
Hiding fixed columns and rows causes incorrect display in Excel file.
Pagination is inconsistent with SpreadJS when the form is exported to PDF.
JSON file size is bigger when converted using GcExcel vs Online designer tool.
The Value property value of the ComboBox cell is lost after JSON I/O.
NullPointerException may occur on loading certain Excel file and saving it.
Conditional formatting is lost if the rule references another sheet.

Release Notes for Version 3.0.0
Enhancements from the Previous Release
The following features has been added with this version of the product:

The support for templates have been added to generate Excel reports.
The support for converting Excel spreadsheets having Charts to PDF documents have been added to the package.
The support for converting Excel spreadsheets having Slicers to PDF documents have been added to the package.
The support for New Excel 2016 Chart types have been added to the package.
The support for Security options while saving to PDF have been added to the package.
The support for document properties while saving to PDF have been added to the package.
The API has been enhanced to support Protect Workbook features.
The support for Chart Sheet option has been added.
The Support for shape with hyperlink has been added.
The Support for Group/Ungroup shapes have been added.
Now, users can calculate Outline Subtotal.
Now, users can get the Precedents and Dependents of formula cell.
Now, the Pivot Table's Grand Totals and Report Layout options are similar to MSExcel.
The support for Shape Adjustment has been provided.
The support for sheet background image to PDF has been provided.
Now, user can export Excel files with multiple images to PDF with reduced file size.
The support for License Workbook instance has been added.

Documents for Excel, .NET Edition 480

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Now, user can rename Pivot fields and Data Fields.
The support for Cell tags of GrapeCity SpreadJS has been added.
The support for Cell types of GrapeCity SpreadJS has been added.
The support for Best fit rows/columns feature of GrapeCity SpreadJS has been added.

Resolved Issues
The following issues have been resolved since the last release.

The NullReferenceException no more occurs on using Workbook.ToJson() and Workbook.Save() methods.
Now, user can set Icon for IconCriteria.
Now, the _xlfn" prefix is not added before IFNA formula while converting to JSON.
User can export to PDF with a specified culture
Fixed the issue where the precision of calculated result was incorrect.
Row/Col Header and every cells are retained after JSON(made by SJS) I/O in GcExcel
Row/Cols with empty date are retained after JSON(made by SJS) I/O in GcExcel
Cell types are retained after JSON(made by SJS) I/O in GcExcel
No longer messy code while debugging GcExcel code

Release Notes for Version 2.2.0
Enhancements from the Previous Release
The following features have been added with this version of the product.

Excel files with shapes can be exported to PDF.
Ranges between different workbooks can be copied.
Worksheet between different workbooks can be copied or moved.
Adjusting page breaks after inserting or deleting rows or columns can be controlled.
The row, column or cell delimiter can be customized while loading or saving a CSV file.
The tail repeated rows and right repeated columns can be set when saving to PDF.
Paste options are supported during copying and pasting ranges.
IRange.Find() and IRange.Replace() methods are supported.
Different kinds of pivot table styles can be shown or hidden.
Pivot table styles can be exported to PDF.
The number format setting for each pivot field is supported.
Japanese ruby characters can be preserved after executing the Excel I/O.
Users can get and customize each page setting before saving to a PDF file.
Any sheet range can be rendered inside a PDF file.
Rows or columns can be kept together when saving to PDF.
Multiple workbooks can be saved to one PDF file.
Specific pages from spreadsheet can be exported to PDF.
Multiple spreadsheet pages can be saved into one PDF page.
IRange.AutoFit method to fit rows or columns is supported.
IRange.FormulaArrayR1C1 property to get or set array formula in R1C1 format is supported.
More import flags are supported while opening an Excel file.
OLE Objects will be preserved after Excel I/O.
Shrink to fit feature for wrapped text is supported while saving to a PDF file.

Documents for Excel, .NET Edition 481

Copyright © 2021 GrapeCity, Inc. All rights reserved.

https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#ExportShapes.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#WorkWithSheets.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#WorkWithSheets.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#ConfigurePageBreaks.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#ImportandExportCSVFileswithDelimiters.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#ConfigureRowstoRepeatatTop.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#ConfigureColumnstoRepeatatLeft.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#CutOrCopyCellRanges.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#FindandReplaceData.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#ApplyStyleToPivotTable.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#ExportPivotTableStylesAndFormat.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#ExportPivotTableStylesAndFormat.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#ImportAndExport.xlsxDocument.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#ImportAndExport.xlsxDocument.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#RenderExcelRangeInsidePDF.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#KeepRowsTogetherOverPageBreaks.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#SaveMultipleWorkbookstoSinglePDF.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#ExportSpecificPagestoPDF.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#SaveMultipleWorkbookstoSinglePDF.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#AutoFitRowHeightandColumnWidth.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#ImportAndExport.xlsxDocument.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#ImportandExportOLEObjects.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#ShrinkToFitWithTextWrap.html

Resolved Issues
The following issues have been resolved since the last release.

GcExcel .NET no longer ignores the 'ignore_empty' parameter in TEXTJOIN formula.
Fixed the issue of large JSON file generation when using ToJson() method on a particular Workbook.
UsedRange.Value now sets proper values to the range when the Formula is set to Empty.

Release Notes for Version 2.1.0
Enhancements from the Previous Release
The following features has been added with this version of the product.

The support for .NET Framework 4.6.1 Target Framework has now been added to the package.
Users can now import and export spreadsheets that contain macros. While these will not be executed, the macros
will now be preserved when saving.
The support for loading and saving GrapeCity SpreadJS JSON files with shapes have been added.
Users can now set rich text format in the cells by applying different styles to the textual information entered in the
cell.
While working with custom named styles, users can now modify an existing style and add it to the Styles collection.
Users can now export Excel files with vertical text to PDF.
Now, users can insert any background image to the worksheet including their organization logo, custom
watermark or a wallpaper of their choice without any issues.
The pivot table has been enhanced in order to support the date field group in Excel 2016.
Some overloads have been added for Open and Save methods to avoid passing file format.

Resolved Issues
The following issues have been resolved since the last release.

The Workbook.Calculate() method now evaluates the cell values correctly.
While saving an Excel file to open XML format, the logical value of the cell is now calculated without any errors.
After configuring the Workbook.FontsFolderPath property, the text in the file completely renders to PDF without
any issues.
Loading SSJSON file with null values no longer throws an exception.
While saving an Excel file to PDF, the merged range in a table now renders appropriately without any issues.
Loading the SSJSON file now renders hidden rows correctly while saving an Excel file to PDF.

Release Notes for Version 2.0.0
Changes from the Previous Release
This version of the product has the following change:

The default value of AutoParse has been changed to boolean false in order to enhance the performance while
setting values to a range.

Documents for Excel, .NET Edition 482

Copyright © 2021 GrapeCity, Inc. All rights reserved.

https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#ImportandExportMacros.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#ImportAndExportJsonStream.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#SetRichTextinaCell.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#CreateAndSetNamedStyle.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#ExportVerticalText.html
https://help.grapecity.com/gcdocs/gcexcel/onlinehelp/webframe.html#CustomizeWorksheets.html

Breaking Change
This version of the product has the following breaking change:

GcExcel .NET 2.0.0 version comes with an evaluation license key that allows users to use the product without any
limitations for a time period of 30 days. However, this version will not work with the license keys of older versions.
This is a FREE upgrade for existing customers who already have licensed version of GcExcel. For more information
on upgrading to the new version, refer Upgrade to Latest Version.

Release Notes for Version 1.5.0.4
Enhancements from the Previous Release
The following features have been added with this version of the product.

Custom functions are now supported. The CustomFunction class has been introduced in order to allow users to
perform custom arithmetic logic.
GcExcel .NET now uses System.Drawing.Color instead of GrapeCity.Documents.Excel.Color in order to allow users
to set standard colors.
The Calculation engine now works on iOS.

Resolved Issues
The following issues have been resolved since the last release.

Calculation results are now displayed correctly when a formula applied on a cell references an external workbook
that was deleted.
Data validation rule is now retained when saving an Excel file with a source from a different sheet's range.

Release Notes for Version 1.5.0.3
Enhancements from the Previous Release
The following features have been added with this version of the product.

The StandardWidthInPixel property has been introduced in order to allow users to get or set the standard
width(in pixel) of all the columns in the worksheet.
The StandardHeightInPixel property has been introduced in order to allow users to get or set the standard
height(in pixel) of all the rows in the worksheet.
While setting borders for a range, users also have the option to reset the range of the adjacent border using the
ResetAdjacentRangeBorder property.
Now, you can use the CellInfo class with some helper functions in order to convert the row/column/cell index to
expression and vice a versa.

Changes from the Previous Release
This version of the product has the following changes:

Documents for Excel, .NET Edition 483

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Now, you can get or set the single cell values in a spreadsheet considerably faster than before.
The performance of setting an array of double/int/float values to a range has been significantly improved. For
instance, Range.Value = new double[,]{ {1d, 2d}, {3d, 4d}}.
You can get or set the style for a single cell in a worksheet quickly and efficiently.

Resolved Issues
The following issues have been resolved since the last release.

PDF is now saved correctly when the width of the column exceeds the width of the paper.

Release Notes for Version 1.5.0.1
Enhancements from the Previous Release
The following features have been added with this version of the product.

Export PDF operations are extensively supported in this version. You can use the Workbook.Save method with
SaveFileFormat.pdf parameter in order to save spreadsheets to pdf files and then you can view the pdf in any pdf
viewer, such as browser.
Cut, Copy and Paste operations are now supported in Shape, Chart, Slicer and Picture.
Enhanced workbook and worksheet views in terms of display (zoom, horizontal and vertical scrollbar, tabs, gridline
color. outlines, whitespace, zeros and a lot more) . Also, you can split a worksheet into panes.
Support for more built-in themes.
Some open and save enhancements have been introduced. Now, you can configure open and save settings while
opening a csv file or stream and saving a csv file or stream respectively.

Release Notes for Version 1.4.0
Enhancements from the Previous Release
The following features have been added with this version of the product.

Excel PageSetup options are now supported to manage printing.
SpreadJS v11 SSJSON (chart ssjson and data validation ssjson) is now supported.
Open options are now supported while opening Excel.
The RefersToR1C1 property in the IName interface is now supported.
All the GcExcel .NET features except calc engine are supported on Xamarin.iOS. Users simply need to disable calc
engine as shown below:
Workbook.EnableCalculation = false;

Resolved Issues
The following issues have been resolved since the last release.

SSJSON now loads without losing custom named styles.
RGBA field can be read in SSJSON without throwing exceptions.
The Value of Range.Rows[i].Hidden is now accurate.

Documents for Excel, .NET Edition 484

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Cell value is now changed after exporting an Excel file when the value contains "\r".

Documents for Excel, .NET Edition 485

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Index
Access a Range, 30-31

Access Areas in a Range, 31

Access Cells, Rows and Columns in a Range, 36-37

Add and Delete Table Columns and Rows, 290-292

Add Slicer in Pivot Table, 316-318

Add Slicer in Table, 315-316

Add Validations, 106-109

Adjust Column Width and Row Height, 432

API Reference, 476

Area Chart, 254-256

Auto Fit Row Height and Column Width, 49-51

Average Rule, 102

Axis and Other Lines, 243-245

Background Image, 181-182

Bar Chart, 256-258

Barcodes, 191

Box Whisker, 275-276

Cell Context, 352-356

Cell Expansion, 352

Cell Types, 59-62

Cell Value Rule, 101

Chart, 218-219

Chart Area, 221-222

Chart Sheet, 284-286

Chart Title, 220-221

Chart Types, 252-254

Charts, 384-389

Codabar, 198-201

Code128, 206-208

Code39, 201-203

Code49, 210-212

Code93, 203-205

Color Scale Rule, 102-103

Column Chart, 258-260

Documents for Excel, .NET Edition 486

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Combo Chart, 260-262

Comments, 80-83

Conditional Formatting, 100-101 , 356-358

Configure Chart, 220

Configure Chart Axis, 245-248

Configure Chart Series, 228-238

Configure Columns to Repeat at Left and Right, 327-328

Configure Fonts and Set Style, 407-408

Configure Page Breaks, 324-325

Configure Page Header and Footer, 321-322

Configure Page Settings, 322-324

Configure Paper Settings, 325-326

Configure Paper Source, 329-330

Configure Print Area, 326-327

Configure Rows to Repeat at Top and Bottom, 328

Configure Sheet Print Settings, 328-329

Control Image Quality, 442-443

Control Pagination, 413-414

Control Position of Overlapping Shapes, 183-184

Convert to Image, 471-475

Create and Delete Chart, 219-220

Create and Delete Tables, 287

Create and Set Custom Named Style, 189-191

Create Excel Report using Template, 397-402

Create Pivot Table, 295-296

Create Row or Column Group, 91-92

Create Workbook, 74-75

Cross Workbook Formula, 158-159

Custom Form Input Types, 379-384

Custom Functions, 159-168

Customize Chart Objects, 223-224

Customize Shape Format and Shape Text, 171-176

Customize Worksheets, 55-57

Cut or Copy Across Sheets, 78-79

Cut or Copy Cell Ranges, 38-41

Cut or Copy Shape, Slicer, Chart and Picture, 41-42

Documents for Excel, .NET Edition 487

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Data Bar Rule, 103

Data Binding, 110-114

Data Label, 249-251

Data Matrix, 214-217

Data Source Binding, 393-397

Data Validations, 106

Date Occurring Rule, 101-102

Default Values in Template Cells, 365-366

Delete Blank Pages From Middle, 419-420

Delete Validation, 109

Digital Signatures, 114-124

EAN-13, 194-196

EAN-8, 196-198

Enable or Disable Calculation Engine, 79-80

End User License Agreement, 22

Error Bars, 238-243

Export Barcodes, 438-439

Export Charts, 432-437

Export Custom Page Information, 422-423

Export Different Headers On Different Pages, 420-421

Export Last Page Without Headers, 421-422

Export Multiple Sheets To One Page, 417-418

Export Pivot Table Styles And Format, 408-410

Export Shapes, 410-411

Export Signature Lines, 439-440

Export Slicers, 437-438

Export Specific Pages To PDF, 423-424

Export to HTML, 445-449

Export to PDF, 405-407

Export Vertical Text, 411-412

Export Worksheet to PDF, 426-428

Expression Rule, 105-106

Features, 23-24

File Operations, 403

Filter, 89-91

Find and Replace Data, 42-44

Documents for Excel, .NET Edition 488

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Fixed Layout, 362-365

Floor, 248-249

Formula Functions, 131-149

Formula Parser, 125-131

Formulas, 124-125

Freeze Panes in a Worksheet, 53-54

Freeze Trailing Panes in a Worksheet, 54-55

Funnel, 283-284

GcExcel .NET Overview, 9

Get Address of Cell Range, 37-38

Get Row and Column Count, 44-45

Get Special Cell Ranges, 31-36

Getting Started, 12-15

Global Settings, 358-361

Group, 91

Group or Ungroup Shapes, 178-180

GS1-128, 208-210

Hide Rows and Columns, 45

Histogram, 276-277

Hyperlink on Shape, 176-178

Hyperlinks, 83-85

Icon Sets Rule, 105

Image Transparency, 183

Import and Export .xlsx Document, 403-405

Import and Export CSV File, 449-451

Import and Export CSV File with Delimiters, 451-453

Import and Export from JSON string, 456

Import and Export JSON Stream, 453-456

Import and Export Macros, 469-470

Import and Export OLE Objects, 470-471

Import and Export SpreadJS Files, 456-468

Insert And Delete Cell Ranges, 45-47

Insert and Delete Rows and Columns, 47-48

Iterative Calculation, 157-158

Keep Rows Together Over Page Breaks, 418-419

Key Features, 10-11

Documents for Excel, .NET Edition 489

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Legends, 251-252

License Information, 18-21

Line Chart, 262-264

Logging, 330-336

Measure Digital Width, 52-53

Merge Cells, 48

Modify Slicer with Custom Style, 320

Modify Table Layout, 293-294

Modify Table Layout for Slicer Style, 320-321

Modify Table with Custom Style, 292-293

Modify Tables, 287-289

Modify Validation, 109-110

Open and Save Workbook, 75-76

Outline Column, 96-100

Outline Subtotals, 94-96

Pareto Chart, 279-280

PDF Form Builder, 366-379

PDF417, 212-214

Pie Chart, 264-266

Pivot Chart, 307-310

Pivot Table, 294-295

Pivot Table Settings, 296-302

Pivot Table Style, 302-307

Plot Area, 222-223

Precedents and Dependents, 154-157

Print Settings, 321

Protect Workbook, 76-78

QRCode, 191-194

Quick Start, 15-18

Quote Prefix, 66-67

Radar Chart, 273-274

Range Operations, 29-30

Range Template Cell, 62-66

Redistribution, 22

Release Notes, 477

Release Notes for Version 1.4.0, 484-485

Documents for Excel, .NET Edition 490

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Release Notes for Version 1.5.0.1, 484

Release Notes for Version 1.5.0.3, 483-484

Release Notes for Version 1.5.0.4, 483

Release Notes for Version 2.0.0, 482-483

Release Notes for Version 2.1.0, 482

Release Notes for Version 2.2.0, 481-482

Release Notes for Version 3.0.0, 480-481

Release Notes for Version 3.1.0, 479-480

Release Notes for Version 3.2.0, 479

Release Notes for Version 4.0.0, 478-479

Release Notes for Version 4.1.0, 477-478

Remove a Group, 92-93

Render Excel Range Inside PDF, 414-417

Rich Text, 70-74

Save Multiple Workbooks to Single PDF, 424-426

Series, 224-228

Set Array Formula, 153-154

Set Formula to Range, 149-151

Set Row Height and Column Width, 49

Set Sheet Styling, 185-189

Set Table Formula, 151-153

Set Values to a Range, 48-49

Shape Adjustment, 180-181

Shapes and Pictures, 168-171

Shrink To Fit With Text Wrap, 412-413

Size and Position of Image, 182-183

Slicer, 315

Slicer Style, 319-320

Sort, 85-88

Sparkline, 310-315

Sparklines, 391-393

Specialized Chart, 280

Statistical Chart, 274-275

Stock Chart, 266-269

Styles, 184-185

Summary Row, 93-94

Documents for Excel, .NET Edition 491

Copyright © 2021 GrapeCity, Inc. All rights reserved.

Sunburst, 280-281

Support Background Color Transparency, 442

Support Document Properties, 431-432

Support for SpreadJS Features, 468-469

Support Security Options, 429-431

Support Sheet Background Image, 440-441

Surface Chart, 269-270

Table, 286-287

Table Filters, 289-290

Table Sort, 289

Table Style, 292

Tables, 389-391

Tags, 67-70

Technical Support, 22

Template Configuration, 340-342

Template Fields, 342-345

Template Properties, 345-352

Templates, 337-340

Theme, 217-218

Top Bottom Rule, 103-104

Track Export Progress, 443-445

TreeMap, 281-283

Unique Rule, 104-105

Upgrade to Latest Version, 21-22

Use Do Filter Operation, 318-319

Walls, 243

Waterfall Chart, 277-279

Work with Used Range, 51-52

Work with Worksheets, 24-29

Workbook, 74

Workbook Views, 80

Working With Page Setup, 428-429

Worksheet, 24

Worksheet Views, 57-59

XY (Scatter) Chart, 270-273

Documents for Excel, .NET Edition 492

Copyright © 2021 GrapeCity, Inc. All rights reserved.

	Table of Contents
	GcExcel .NET Overview
	Key Features
	Getting Started
	Quick Start
	License Information
	Upgrade to Latest Version
	Technical Support
	Redistribution
	End User License Agreement

	Features
	Worksheet
	Work with Worksheets
	Range Operations
	Access a Range
	Access Areas in a Range
	Get Special Cell Ranges
	Access Cells, Rows and Columns in a Range
	Get Address of Cell Range
	Cut or Copy Cell Ranges
	Cut or Copy Shape, Slicer, Chart and Picture
	Find and Replace Data
	Get Row and Column Count
	Hide Rows and Columns
	Insert And Delete Cell Ranges
	Insert and Delete Rows and Columns
	Merge Cells
	Set Values to a Range
	Set Row Height and Column Width
	Auto Fit Row Height and Column Width
	Work with Used Range
	Measure Digital Width

	Freeze Panes in a Worksheet
	Freeze Trailing Panes in a Worksheet
	Customize Worksheets
	Worksheet Views
	Cell Types
	Range Template Cell

	Quote Prefix
	Tags
	Rich Text

	Workbook
	Create Workbook
	Open and Save Workbook
	Protect Workbook
	Cut or Copy Across Sheets
	Enable or Disable Calculation Engine
	Workbook Views

	Comments
	Hyperlinks
	Sort
	Filter
	Group
	Create Row or Column Group
	Remove a Group
	Summary Row
	Outline Subtotals
	Outline Column

	Conditional Formatting
	Cell Value Rule
	Date Occurring Rule
	Average Rule
	Color Scale Rule
	Data Bar Rule
	Top Bottom Rule
	Unique Rule
	Icon Sets Rule
	Expression Rule

	Data Validations
	Add Validations
	Delete Validation
	Modify Validation

	Data Binding
	Digital Signatures
	Formulas
	Formula Parser
	Formula Functions
	Set Formula to Range
	Set Table Formula
	Set Array Formula
	Precedents and Dependents
	Iterative Calculation
	Cross Workbook Formula

	Custom Functions
	Shapes and Pictures
	Customize Shape Format and Shape Text
	Hyperlink on Shape
	Group or Ungroup Shapes
	Shape Adjustment
	Background Image
	Size and Position of Image
	Image Transparency
	Control Position of Overlapping Shapes

	Styles
	Set Sheet Styling
	Create and Set Custom Named Style

	Barcodes
	QRCode
	EAN-13
	EAN-8
	Codabar
	Code39
	Code93
	Code128
	GS1-128
	Code49
	PDF417
	Data Matrix

	Theme
	Chart
	Create and Delete Chart
	Configure Chart
	Chart Title
	Chart Area
	Plot Area

	Customize Chart Objects
	Series
	Configure Chart Series
	Error Bars

	Walls
	Axis and Other Lines
	Configure Chart Axis

	Floor
	Data Label
	Legends

	Chart Types
	Area Chart
	Bar Chart
	Column Chart
	Combo Chart
	Line Chart
	Pie Chart
	Stock Chart
	Surface Chart
	XY (Scatter) Chart
	Radar Chart
	Statistical Chart
	Box Whisker
	Histogram
	Waterfall Chart
	Pareto Chart

	Specialized Chart
	Sunburst
	TreeMap
	Funnel

	Chart Sheet

	Table
	Create and Delete Tables
	Modify Tables
	Table Sort
	Table Filters
	Add and Delete Table Columns and Rows
	Table Style
	Modify Table with Custom Style
	Modify Table Layout

	Pivot Table
	Create Pivot Table
	Pivot Table Settings
	Pivot Table Style

	Pivot Chart
	Sparkline
	Slicer
	Add Slicer in Table
	Add Slicer in Pivot Table
	Use Do Filter Operation
	Slicer Style
	Modify Slicer with Custom Style
	Modify Table Layout for Slicer Style

	Print Settings
	Configure Page Header and Footer
	Configure Page Settings
	Configure Page Breaks
	Configure Paper Settings
	Configure Print Area
	Configure Columns to Repeat at Left and Right
	Configure Rows to Repeat at Top and Bottom
	Configure Sheet Print Settings
	Configure Paper Source

	Logging

	Templates
	Template Configuration
	Template Fields
	Template Properties
	Cell Expansion
	Cell Context

	Conditional Formatting
	Global Settings
	Fixed Layout
	Default Values in Template Cells
	PDF Form Builder
	Custom Form Input Types

	Charts
	Tables
	Sparklines

	Data Source Binding
	Create Excel Report using Template

	File Operations
	Import and Export .xlsx Document
	Export to PDF
	Configure Fonts and Set Style
	Export Pivot Table Styles And Format
	Export Shapes
	Export Vertical Text
	Shrink To Fit With Text Wrap
	Control Pagination
	Render Excel Range Inside PDF
	Export Multiple Sheets To One Page
	Keep Rows Together Over Page Breaks
	Delete Blank Pages From Middle
	Export Different Headers On Different Pages
	Export Last Page Without Headers
	Export Custom Page Information
	Export Specific Pages To PDF
	Save Multiple Workbooks to Single PDF
	Export Worksheet to PDF

	Working With Page Setup
	Support Security Options
	Support Document Properties
	Adjust Column Width and Row Height
	Export Charts
	Export Slicers
	Export Barcodes
	Export Signature Lines
	Support Sheet Background Image
	Support Background Color Transparency
	Control Image Quality
	Track Export Progress

	Export to HTML
	Import and Export CSV File
	Import and Export CSV File with Delimiters
	Import and Export JSON Stream
	Import and Export from JSON string
	Import and Export SpreadJS Files
	Support for SpreadJS Features

	Import and Export Macros
	Import and Export OLE Objects
	Convert to Image

	API Reference
	Release Notes
	Release Notes for Version 4.1.0
	Release Notes for Version 4.0.0
	Release Notes for Version 3.2.0
	Release Notes for Version 3.1.0
	Release Notes for Version 3.0.0
	Release Notes for Version 2.2.0
	Release Notes for Version 2.1.0
	Release Notes for Version 2.0.0
	Release Notes for Version 1.5.0.4
	Release Notes for Version 1.5.0.3
	Release Notes for Version 1.5.0.1
	Release Notes for Version 1.4.0

	Index

